Loading…

The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response

We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shel...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-09, Vol.7 (1), p.11343-9, Article 11343
Main Authors: Andreeva, Yulia I., Drozdov, Andrey S., Fakhardo, Anna F., Cheplagin, Nikolay A., Shtil, Alexander A., Vinogradov, Vladimir V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293
cites cdi_FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293
container_end_page 9
container_issue 1
container_start_page 11343
container_title Scientific reports
container_volume 7
creator Andreeva, Yulia I.
Drozdov, Andrey S.
Fakhardo, Anna F.
Cheplagin, Nikolay A.
Shtil, Alexander A.
Vinogradov, Vladimir V.
description We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.
doi_str_mv 10.1038/s41598-017-11673-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5595919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954331105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EolXpH-CALHHhEvDnJr4goQoKUiUu5Wx5ncnGVdZObYd2-fXMdku1IOGLR55n3vHMS8hrzt5zJrsPRXFtuobxtuF81cpGPSOngindCCnE86P4hJyXcsPwaGEUNy_JiegMY4LzU3J7PQL1KdacpsmtJ6A9lOrWYQq_XA0p0pyWCnRImZZdrCOUUGga6JTuqN_VVNN98HTrNhEqBtHFVOYRMhR6F-pI5xGRiBl8mVMs8Iq8GNxU4PzxPiM_vny-vvjaXH2__Hbx6arxqlW18VJLwxUX2jtojR-8W_lWKA-91mvuuNQKlF710ui-7bToW-iZ6YRwSvbCyDPy8aA7L-st9B5wRjfZOYetyzubXLB_Z2IY7Sb9tFobbfhe4N2jQE63C27FbkPxgGuKkJZiEelWuNNWI_r2H_QmLTnieEhpJSXnbE-JA-VzKiXD8PQZzuzeVHsw1aKp9sFUq7DozfEYTyV_LERAHoCCqbiBfNT7_7K_AYnbr-E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954331105</pqid></control><display><type>article</type><title>The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Andreeva, Yulia I. ; Drozdov, Andrey S. ; Fakhardo, Anna F. ; Cheplagin, Nikolay A. ; Shtil, Alexander A. ; Vinogradov, Vladimir V.</creator><creatorcontrib>Andreeva, Yulia I. ; Drozdov, Andrey S. ; Fakhardo, Anna F. ; Cheplagin, Nikolay A. ; Shtil, Alexander A. ; Vinogradov, Vladimir V.</creatorcontrib><description>We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-11673-4</identifier><identifier>PMID: 28900211</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/301/1019/1022 ; 639/638/298/398 ; 639/638/298/920 ; 639/638/541/966 ; 639/925/357/354 ; Aggregates ; Biocompatibility ; Citric acid ; Cytotoxicity ; Glycerol ; Humanities and Social Sciences ; Hydrogen bonds ; Magnetic fields ; Magnetite ; multidisciplinary ; Nanoparticles ; Physicochemical properties ; Reagents ; Science ; Science (multidisciplinary) ; Size distribution ; Tumor cell lines ; Viscosity ; Zeta potential</subject><ispartof>Scientific reports, 2017-09, Vol.7 (1), p.11343-9, Article 11343</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293</citedby><cites>FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293</cites><orcidid>0000-0001-7260-3095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1954331105/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1954331105?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28900211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreeva, Yulia I.</creatorcontrib><creatorcontrib>Drozdov, Andrey S.</creatorcontrib><creatorcontrib>Fakhardo, Anna F.</creatorcontrib><creatorcontrib>Cheplagin, Nikolay A.</creatorcontrib><creatorcontrib>Shtil, Alexander A.</creatorcontrib><creatorcontrib>Vinogradov, Vladimir V.</creatorcontrib><title>The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.</description><subject>140/146</subject><subject>639/301/1019/1022</subject><subject>639/638/298/398</subject><subject>639/638/298/920</subject><subject>639/638/541/966</subject><subject>639/925/357/354</subject><subject>Aggregates</subject><subject>Biocompatibility</subject><subject>Citric acid</subject><subject>Cytotoxicity</subject><subject>Glycerol</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen bonds</subject><subject>Magnetic fields</subject><subject>Magnetite</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Physicochemical properties</subject><subject>Reagents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Size distribution</subject><subject>Tumor cell lines</subject><subject>Viscosity</subject><subject>Zeta potential</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kU1v1DAQhi0EolXpH-CALHHhEvDnJr4goQoKUiUu5Wx5ncnGVdZObYd2-fXMdku1IOGLR55n3vHMS8hrzt5zJrsPRXFtuobxtuF81cpGPSOngindCCnE86P4hJyXcsPwaGEUNy_JiegMY4LzU3J7PQL1KdacpsmtJ6A9lOrWYQq_XA0p0pyWCnRImZZdrCOUUGga6JTuqN_VVNN98HTrNhEqBtHFVOYRMhR6F-pI5xGRiBl8mVMs8Iq8GNxU4PzxPiM_vny-vvjaXH2__Hbx6arxqlW18VJLwxUX2jtojR-8W_lWKA-91mvuuNQKlF710ui-7bToW-iZ6YRwSvbCyDPy8aA7L-st9B5wRjfZOYetyzubXLB_Z2IY7Sb9tFobbfhe4N2jQE63C27FbkPxgGuKkJZiEelWuNNWI_r2H_QmLTnieEhpJSXnbE-JA-VzKiXD8PQZzuzeVHsw1aKp9sFUq7DozfEYTyV_LERAHoCCqbiBfNT7_7K_AYnbr-E</recordid><startdate>20170912</startdate><enddate>20170912</enddate><creator>Andreeva, Yulia I.</creator><creator>Drozdov, Andrey S.</creator><creator>Fakhardo, Anna F.</creator><creator>Cheplagin, Nikolay A.</creator><creator>Shtil, Alexander A.</creator><creator>Vinogradov, Vladimir V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7260-3095</orcidid></search><sort><creationdate>20170912</creationdate><title>The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response</title><author>Andreeva, Yulia I. ; Drozdov, Andrey S. ; Fakhardo, Anna F. ; Cheplagin, Nikolay A. ; Shtil, Alexander A. ; Vinogradov, Vladimir V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/146</topic><topic>639/301/1019/1022</topic><topic>639/638/298/398</topic><topic>639/638/298/920</topic><topic>639/638/541/966</topic><topic>639/925/357/354</topic><topic>Aggregates</topic><topic>Biocompatibility</topic><topic>Citric acid</topic><topic>Cytotoxicity</topic><topic>Glycerol</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen bonds</topic><topic>Magnetic fields</topic><topic>Magnetite</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Physicochemical properties</topic><topic>Reagents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Size distribution</topic><topic>Tumor cell lines</topic><topic>Viscosity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreeva, Yulia I.</creatorcontrib><creatorcontrib>Drozdov, Andrey S.</creatorcontrib><creatorcontrib>Fakhardo, Anna F.</creatorcontrib><creatorcontrib>Cheplagin, Nikolay A.</creatorcontrib><creatorcontrib>Shtil, Alexander A.</creatorcontrib><creatorcontrib>Vinogradov, Vladimir V.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreeva, Yulia I.</au><au>Drozdov, Andrey S.</au><au>Fakhardo, Anna F.</au><au>Cheplagin, Nikolay A.</au><au>Shtil, Alexander A.</au><au>Vinogradov, Vladimir V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-09-12</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>11343</spage><epage>9</epage><pages>11343-9</pages><artnum>11343</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28900211</pmid><doi>10.1038/s41598-017-11673-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7260-3095</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-09, Vol.7 (1), p.11343-9, Article 11343
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5595919
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/146
639/301/1019/1022
639/638/298/398
639/638/298/920
639/638/541/966
639/925/357/354
Aggregates
Biocompatibility
Citric acid
Cytotoxicity
Glycerol
Humanities and Social Sciences
Hydrogen bonds
Magnetic fields
Magnetite
multidisciplinary
Nanoparticles
Physicochemical properties
Reagents
Science
Science (multidisciplinary)
Size distribution
Tumor cell lines
Viscosity
Zeta potential
title The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20controllable%20destabilization%20route%20for%20synthesis%20of%20low%20cytotoxic%20magnetic%20nanospheres%20with%20photonic%20response&rft.jtitle=Scientific%20reports&rft.au=Andreeva,%20Yulia%20I.&rft.date=2017-09-12&rft.volume=7&rft.issue=1&rft.spage=11343&rft.epage=9&rft.pages=11343-9&rft.artnum=11343&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-11673-4&rft_dat=%3Cproquest_pubme%3E1954331105%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1954331105&rft_id=info:pmid/28900211&rfr_iscdi=true