Loading…
The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response
We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shel...
Saved in:
Published in: | Scientific reports 2017-09, Vol.7 (1), p.11343-9, Article 11343 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 11343 |
container_title | Scientific reports |
container_volume | 7 |
creator | Andreeva, Yulia I. Drozdov, Andrey S. Fakhardo, Anna F. Cheplagin, Nikolay A. Shtil, Alexander A. Vinogradov, Vladimir V. |
description | We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine. |
doi_str_mv | 10.1038/s41598-017-11673-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5595919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954331105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EolXpH-CALHHhEvDnJr4goQoKUiUu5Wx5ncnGVdZObYd2-fXMdku1IOGLR55n3vHMS8hrzt5zJrsPRXFtuobxtuF81cpGPSOngindCCnE86P4hJyXcsPwaGEUNy_JiegMY4LzU3J7PQL1KdacpsmtJ6A9lOrWYQq_XA0p0pyWCnRImZZdrCOUUGga6JTuqN_VVNN98HTrNhEqBtHFVOYRMhR6F-pI5xGRiBl8mVMs8Iq8GNxU4PzxPiM_vny-vvjaXH2__Hbx6arxqlW18VJLwxUX2jtojR-8W_lWKA-91mvuuNQKlF710ui-7bToW-iZ6YRwSvbCyDPy8aA7L-st9B5wRjfZOYetyzubXLB_Z2IY7Sb9tFobbfhe4N2jQE63C27FbkPxgGuKkJZiEelWuNNWI_r2H_QmLTnieEhpJSXnbE-JA-VzKiXD8PQZzuzeVHsw1aKp9sFUq7DozfEYTyV_LERAHoCCqbiBfNT7_7K_AYnbr-E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954331105</pqid></control><display><type>article</type><title>The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Andreeva, Yulia I. ; Drozdov, Andrey S. ; Fakhardo, Anna F. ; Cheplagin, Nikolay A. ; Shtil, Alexander A. ; Vinogradov, Vladimir V.</creator><creatorcontrib>Andreeva, Yulia I. ; Drozdov, Andrey S. ; Fakhardo, Anna F. ; Cheplagin, Nikolay A. ; Shtil, Alexander A. ; Vinogradov, Vladimir V.</creatorcontrib><description>We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-11673-4</identifier><identifier>PMID: 28900211</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/301/1019/1022 ; 639/638/298/398 ; 639/638/298/920 ; 639/638/541/966 ; 639/925/357/354 ; Aggregates ; Biocompatibility ; Citric acid ; Cytotoxicity ; Glycerol ; Humanities and Social Sciences ; Hydrogen bonds ; Magnetic fields ; Magnetite ; multidisciplinary ; Nanoparticles ; Physicochemical properties ; Reagents ; Science ; Science (multidisciplinary) ; Size distribution ; Tumor cell lines ; Viscosity ; Zeta potential</subject><ispartof>Scientific reports, 2017-09, Vol.7 (1), p.11343-9, Article 11343</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293</citedby><cites>FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293</cites><orcidid>0000-0001-7260-3095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1954331105/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1954331105?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28900211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreeva, Yulia I.</creatorcontrib><creatorcontrib>Drozdov, Andrey S.</creatorcontrib><creatorcontrib>Fakhardo, Anna F.</creatorcontrib><creatorcontrib>Cheplagin, Nikolay A.</creatorcontrib><creatorcontrib>Shtil, Alexander A.</creatorcontrib><creatorcontrib>Vinogradov, Vladimir V.</creatorcontrib><title>The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.</description><subject>140/146</subject><subject>639/301/1019/1022</subject><subject>639/638/298/398</subject><subject>639/638/298/920</subject><subject>639/638/541/966</subject><subject>639/925/357/354</subject><subject>Aggregates</subject><subject>Biocompatibility</subject><subject>Citric acid</subject><subject>Cytotoxicity</subject><subject>Glycerol</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen bonds</subject><subject>Magnetic fields</subject><subject>Magnetite</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Physicochemical properties</subject><subject>Reagents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Size distribution</subject><subject>Tumor cell lines</subject><subject>Viscosity</subject><subject>Zeta potential</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kU1v1DAQhi0EolXpH-CALHHhEvDnJr4goQoKUiUu5Wx5ncnGVdZObYd2-fXMdku1IOGLR55n3vHMS8hrzt5zJrsPRXFtuobxtuF81cpGPSOngindCCnE86P4hJyXcsPwaGEUNy_JiegMY4LzU3J7PQL1KdacpsmtJ6A9lOrWYQq_XA0p0pyWCnRImZZdrCOUUGga6JTuqN_VVNN98HTrNhEqBtHFVOYRMhR6F-pI5xGRiBl8mVMs8Iq8GNxU4PzxPiM_vny-vvjaXH2__Hbx6arxqlW18VJLwxUX2jtojR-8W_lWKA-91mvuuNQKlF710ui-7bToW-iZ6YRwSvbCyDPy8aA7L-st9B5wRjfZOYetyzubXLB_Z2IY7Sb9tFobbfhe4N2jQE63C27FbkPxgGuKkJZiEelWuNNWI_r2H_QmLTnieEhpJSXnbE-JA-VzKiXD8PQZzuzeVHsw1aKp9sFUq7DozfEYTyV_LERAHoCCqbiBfNT7_7K_AYnbr-E</recordid><startdate>20170912</startdate><enddate>20170912</enddate><creator>Andreeva, Yulia I.</creator><creator>Drozdov, Andrey S.</creator><creator>Fakhardo, Anna F.</creator><creator>Cheplagin, Nikolay A.</creator><creator>Shtil, Alexander A.</creator><creator>Vinogradov, Vladimir V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7260-3095</orcidid></search><sort><creationdate>20170912</creationdate><title>The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response</title><author>Andreeva, Yulia I. ; Drozdov, Andrey S. ; Fakhardo, Anna F. ; Cheplagin, Nikolay A. ; Shtil, Alexander A. ; Vinogradov, Vladimir V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/146</topic><topic>639/301/1019/1022</topic><topic>639/638/298/398</topic><topic>639/638/298/920</topic><topic>639/638/541/966</topic><topic>639/925/357/354</topic><topic>Aggregates</topic><topic>Biocompatibility</topic><topic>Citric acid</topic><topic>Cytotoxicity</topic><topic>Glycerol</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen bonds</topic><topic>Magnetic fields</topic><topic>Magnetite</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Physicochemical properties</topic><topic>Reagents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Size distribution</topic><topic>Tumor cell lines</topic><topic>Viscosity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreeva, Yulia I.</creatorcontrib><creatorcontrib>Drozdov, Andrey S.</creatorcontrib><creatorcontrib>Fakhardo, Anna F.</creatorcontrib><creatorcontrib>Cheplagin, Nikolay A.</creatorcontrib><creatorcontrib>Shtil, Alexander A.</creatorcontrib><creatorcontrib>Vinogradov, Vladimir V.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreeva, Yulia I.</au><au>Drozdov, Andrey S.</au><au>Fakhardo, Anna F.</au><au>Cheplagin, Nikolay A.</au><au>Shtil, Alexander A.</au><au>Vinogradov, Vladimir V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-09-12</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>11343</spage><epage>9</epage><pages>11343-9</pages><artnum>11343</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28900211</pmid><doi>10.1038/s41598-017-11673-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7260-3095</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-09, Vol.7 (1), p.11343-9, Article 11343 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5595919 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/146 639/301/1019/1022 639/638/298/398 639/638/298/920 639/638/541/966 639/925/357/354 Aggregates Biocompatibility Citric acid Cytotoxicity Glycerol Humanities and Social Sciences Hydrogen bonds Magnetic fields Magnetite multidisciplinary Nanoparticles Physicochemical properties Reagents Science Science (multidisciplinary) Size distribution Tumor cell lines Viscosity Zeta potential |
title | The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20controllable%20destabilization%20route%20for%20synthesis%20of%20low%20cytotoxic%20magnetic%20nanospheres%20with%20photonic%20response&rft.jtitle=Scientific%20reports&rft.au=Andreeva,%20Yulia%20I.&rft.date=2017-09-12&rft.volume=7&rft.issue=1&rft.spage=11343&rft.epage=9&rft.pages=11343-9&rft.artnum=11343&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-11673-4&rft_dat=%3Cproquest_pubme%3E1954331105%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c353914125cae79cfca6c724ced55b1a1354e456d395d7852d7ed09822a43d293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1954331105&rft_id=info:pmid/28900211&rfr_iscdi=true |