Loading…

Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development

The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible...

Full description

Saved in:
Bibliographic Details
Published in:Oncogene 2017-09, Vol.36 (38), p.5382-5391
Main Authors: Han, B, Park, H K, Ching, T, Panneerselvam, J, Wang, H, Shen, Y, Zhang, J, Li, L, Che, R, Garmire, L, Fei, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3
cites cdi_FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3
container_end_page 5391
container_issue 38
container_start_page 5382
container_title Oncogene
container_volume 36
creator Han, B
Park, H K
Ching, T
Panneerselvam, J
Wang, H
Shen, Y
Zhang, J
Li, L
Che, R
Garmire, L
Fei, P
description The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both in vitro and in vivo . Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.
doi_str_mv 10.1038/onc.2017.150
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5608638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A505618259</galeid><sourcerecordid>A505618259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3</originalsourceid><addsrcrecordid>eNptkk9v1DAQxSMEokvhxhlZ4sKBLOMkTuwL0lL-FKkqaAVny3EmW1eOHexkpX4DPjZOt5QWVT5Y8vzmjeb5ZdlLCmsKJX_nnV4XQJs1ZfAoW9GqqXPGRPU4W4FgkIuiLI6yZzFeAkAjoHiaHRWcQdVQtsp-n86DcuTjhy0lg-9mqyaMZLpAElBfaWvcjvieRLc9_57ePVF9j3oiyk4YnJrMHsn2fEPiaI1eYOU6or2bgmnnayl_rRbncQwYo_Fu0dPKaQykwz1aPw7opufZk17ZiC9u7uPs5-dPP05O87NvX76ebM5yzXg55T12rFFN2xYNNLxQQoPogGmBAC3Qquad4o3uu4JTQbHioDqdLNEASDWq8jh7f9Ad53bATqfRQVk5BjOocCW9MvJ-xZkLufN7yWrgdcmTwJsbgeB_zRgnOZio0Vrl0M9RUi4EhZqXZUJf_4de-jm5ZhMlqvQ7ZVWKf9ROWZTG9T7N1Yuo3DBgNeUFW6j1A1Q6HQ4mGY69Se_3Gt4eGnTwMQbsb3ekIJfkyJQcuSRHpuQk_NVdX27hv1FJQH4AYiq5HYY7yzwk-AdMI863</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940953439</pqid></control><display><type>article</type><title>Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development</title><source>Springer Nature</source><creator>Han, B ; Park, H K ; Ching, T ; Panneerselvam, J ; Wang, H ; Shen, Y ; Zhang, J ; Li, L ; Che, R ; Garmire, L ; Fei, P</creator><creatorcontrib>Han, B ; Park, H K ; Ching, T ; Panneerselvam, J ; Wang, H ; Shen, Y ; Zhang, J ; Li, L ; Che, R ; Garmire, L ; Fei, P</creatorcontrib><description>The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both in vitro and in vivo . Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2017.150</identifier><identifier>PMID: 28504715</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/31 ; 13/89 ; 14/19 ; 38/77 ; 38/91 ; 59/5 ; 631/337/1645/1792 ; 631/67/327 ; 82/16 ; 96/2 ; Alternative Splicing ; Apoptosis ; Cancer ; Carcinogenesis ; Cell Biology ; Cell Hypoxia - physiology ; Cell Line, Tumor ; Enzymes ; Exon skipping ; Exons ; Gene expression ; Genetic aspects ; Health aspects ; Human Genetics ; Humans ; Hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1 - genetics ; Hypoxia-Inducible Factor 1 - metabolism ; Hypoxia-inducible factors ; Internal Medicine ; Introns ; Medicine ; Medicine &amp; Public Health ; Neoplasia ; Neoplasms - enzymology ; Neoplasms - genetics ; Neoplasms - metabolism ; Oncogenes ; Oncology ; Original ; original-article ; p53 Protein ; Ribonucleic acid ; Ribonucleoproteins ; Ribonucleoproteins, Small Nuclear - genetics ; Ribonucleoproteins, Small Nuclear - metabolism ; RNA ; RNA Nucleotidyltransferases - biosynthesis ; RNA Nucleotidyltransferases - genetics ; RNA Nucleotidyltransferases - metabolism ; RNA processing ; RNA Splicing ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumorigenesis ; Tumors</subject><ispartof>Oncogene, 2017-09, Vol.36 (38), p.5382-5391</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 21, 2017</rights><rights>Copyright © 2017 The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3</citedby><cites>FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3</cites><orcidid>0000-0002-0818-409X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28504715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, B</creatorcontrib><creatorcontrib>Park, H K</creatorcontrib><creatorcontrib>Ching, T</creatorcontrib><creatorcontrib>Panneerselvam, J</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Shen, Y</creatorcontrib><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Li, L</creatorcontrib><creatorcontrib>Che, R</creatorcontrib><creatorcontrib>Garmire, L</creatorcontrib><creatorcontrib>Fei, P</creatorcontrib><title>Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both in vitro and in vivo . Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.</description><subject>13/109</subject><subject>13/31</subject><subject>13/89</subject><subject>14/19</subject><subject>38/77</subject><subject>38/91</subject><subject>59/5</subject><subject>631/337/1645/1792</subject><subject>631/67/327</subject><subject>82/16</subject><subject>96/2</subject><subject>Alternative Splicing</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Cell Biology</subject><subject>Cell Hypoxia - physiology</subject><subject>Cell Line, Tumor</subject><subject>Enzymes</subject><subject>Exon skipping</subject><subject>Exons</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1 - genetics</subject><subject>Hypoxia-Inducible Factor 1 - metabolism</subject><subject>Hypoxia-inducible factors</subject><subject>Internal Medicine</subject><subject>Introns</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neoplasia</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Oncogenes</subject><subject>Oncology</subject><subject>Original</subject><subject>original-article</subject><subject>p53 Protein</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins</subject><subject>Ribonucleoproteins, Small Nuclear - genetics</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>RNA</subject><subject>RNA Nucleotidyltransferases - biosynthesis</subject><subject>RNA Nucleotidyltransferases - genetics</subject><subject>RNA Nucleotidyltransferases - metabolism</subject><subject>RNA processing</subject><subject>RNA Splicing</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkk9v1DAQxSMEokvhxhlZ4sKBLOMkTuwL0lL-FKkqaAVny3EmW1eOHexkpX4DPjZOt5QWVT5Y8vzmjeb5ZdlLCmsKJX_nnV4XQJs1ZfAoW9GqqXPGRPU4W4FgkIuiLI6yZzFeAkAjoHiaHRWcQdVQtsp-n86DcuTjhy0lg-9mqyaMZLpAElBfaWvcjvieRLc9_57ePVF9j3oiyk4YnJrMHsn2fEPiaI1eYOU6or2bgmnnayl_rRbncQwYo_Fu0dPKaQykwz1aPw7opufZk17ZiC9u7uPs5-dPP05O87NvX76ebM5yzXg55T12rFFN2xYNNLxQQoPogGmBAC3Qquad4o3uu4JTQbHioDqdLNEASDWq8jh7f9Ad53bATqfRQVk5BjOocCW9MvJ-xZkLufN7yWrgdcmTwJsbgeB_zRgnOZio0Vrl0M9RUi4EhZqXZUJf_4de-jm5ZhMlqvQ7ZVWKf9ROWZTG9T7N1Yuo3DBgNeUFW6j1A1Q6HQ4mGY69Se_3Gt4eGnTwMQbsb3ekIJfkyJQcuSRHpuQk_NVdX27hv1FJQH4AYiq5HYY7yzwk-AdMI863</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>Han, B</creator><creator>Park, H K</creator><creator>Ching, T</creator><creator>Panneerselvam, J</creator><creator>Wang, H</creator><creator>Shen, Y</creator><creator>Zhang, J</creator><creator>Li, L</creator><creator>Che, R</creator><creator>Garmire, L</creator><creator>Fei, P</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0818-409X</orcidid></search><sort><creationdate>20170921</creationdate><title>Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development</title><author>Han, B ; Park, H K ; Ching, T ; Panneerselvam, J ; Wang, H ; Shen, Y ; Zhang, J ; Li, L ; Che, R ; Garmire, L ; Fei, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/109</topic><topic>13/31</topic><topic>13/89</topic><topic>14/19</topic><topic>38/77</topic><topic>38/91</topic><topic>59/5</topic><topic>631/337/1645/1792</topic><topic>631/67/327</topic><topic>82/16</topic><topic>96/2</topic><topic>Alternative Splicing</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Cell Biology</topic><topic>Cell Hypoxia - physiology</topic><topic>Cell Line, Tumor</topic><topic>Enzymes</topic><topic>Exon skipping</topic><topic>Exons</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1 - genetics</topic><topic>Hypoxia-Inducible Factor 1 - metabolism</topic><topic>Hypoxia-inducible factors</topic><topic>Internal Medicine</topic><topic>Introns</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neoplasia</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Oncogenes</topic><topic>Oncology</topic><topic>Original</topic><topic>original-article</topic><topic>p53 Protein</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins</topic><topic>Ribonucleoproteins, Small Nuclear - genetics</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>RNA</topic><topic>RNA Nucleotidyltransferases - biosynthesis</topic><topic>RNA Nucleotidyltransferases - genetics</topic><topic>RNA Nucleotidyltransferases - metabolism</topic><topic>RNA processing</topic><topic>RNA Splicing</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, B</creatorcontrib><creatorcontrib>Park, H K</creatorcontrib><creatorcontrib>Ching, T</creatorcontrib><creatorcontrib>Panneerselvam, J</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Shen, Y</creatorcontrib><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Li, L</creatorcontrib><creatorcontrib>Che, R</creatorcontrib><creatorcontrib>Garmire, L</creatorcontrib><creatorcontrib>Fei, P</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, B</au><au>Park, H K</au><au>Ching, T</au><au>Panneerselvam, J</au><au>Wang, H</au><au>Shen, Y</au><au>Zhang, J</au><au>Li, L</au><au>Che, R</au><au>Garmire, L</au><au>Fei, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2017-09-21</date><risdate>2017</risdate><volume>36</volume><issue>38</issue><spage>5382</spage><epage>5391</epage><pages>5382-5391</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both in vitro and in vivo . Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28504715</pmid><doi>10.1038/onc.2017.150</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0818-409X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2017-09, Vol.36 (38), p.5382-5391
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5608638
source Springer Nature
subjects 13/109
13/31
13/89
14/19
38/77
38/91
59/5
631/337/1645/1792
631/67/327
82/16
96/2
Alternative Splicing
Apoptosis
Cancer
Carcinogenesis
Cell Biology
Cell Hypoxia - physiology
Cell Line, Tumor
Enzymes
Exon skipping
Exons
Gene expression
Genetic aspects
Health aspects
Human Genetics
Humans
Hypoxia-inducible factor 1
Hypoxia-Inducible Factor 1 - genetics
Hypoxia-Inducible Factor 1 - metabolism
Hypoxia-inducible factors
Internal Medicine
Introns
Medicine
Medicine & Public Health
Neoplasia
Neoplasms - enzymology
Neoplasms - genetics
Neoplasms - metabolism
Oncogenes
Oncology
Original
original-article
p53 Protein
Ribonucleic acid
Ribonucleoproteins
Ribonucleoproteins, Small Nuclear - genetics
Ribonucleoproteins, Small Nuclear - metabolism
RNA
RNA Nucleotidyltransferases - biosynthesis
RNA Nucleotidyltransferases - genetics
RNA Nucleotidyltransferases - metabolism
RNA processing
RNA Splicing
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Tumorigenesis
Tumors
title Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20DBR1%20modulates%20the%20recycling%20of%20snRNPs%20to%20affect%20alternative%20RNA%20splicing%20and%20contributes%20to%20the%20suppression%20of%20cancer%20development&rft.jtitle=Oncogene&rft.au=Han,%20B&rft.date=2017-09-21&rft.volume=36&rft.issue=38&rft.spage=5382&rft.epage=5391&rft.pages=5382-5391&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2017.150&rft_dat=%3Cgale_pubme%3EA505618259%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1940953439&rft_id=info:pmid/28504715&rft_galeid=A505618259&rfr_iscdi=true