Loading…
Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development
The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible...
Saved in:
Published in: | Oncogene 2017-09, Vol.36 (38), p.5382-5391 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3 |
container_end_page | 5391 |
container_issue | 38 |
container_start_page | 5382 |
container_title | Oncogene |
container_volume | 36 |
creator | Han, B Park, H K Ching, T Panneerselvam, J Wang, H Shen, Y Zhang, J Li, L Che, R Garmire, L Fei, P |
description | The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both
in vitro
and
in vivo
. Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer. |
doi_str_mv | 10.1038/onc.2017.150 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5608638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A505618259</galeid><sourcerecordid>A505618259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3</originalsourceid><addsrcrecordid>eNptkk9v1DAQxSMEokvhxhlZ4sKBLOMkTuwL0lL-FKkqaAVny3EmW1eOHexkpX4DPjZOt5QWVT5Y8vzmjeb5ZdlLCmsKJX_nnV4XQJs1ZfAoW9GqqXPGRPU4W4FgkIuiLI6yZzFeAkAjoHiaHRWcQdVQtsp-n86DcuTjhy0lg-9mqyaMZLpAElBfaWvcjvieRLc9_57ePVF9j3oiyk4YnJrMHsn2fEPiaI1eYOU6or2bgmnnayl_rRbncQwYo_Fu0dPKaQykwz1aPw7opufZk17ZiC9u7uPs5-dPP05O87NvX76ebM5yzXg55T12rFFN2xYNNLxQQoPogGmBAC3Qquad4o3uu4JTQbHioDqdLNEASDWq8jh7f9Ad53bATqfRQVk5BjOocCW9MvJ-xZkLufN7yWrgdcmTwJsbgeB_zRgnOZio0Vrl0M9RUi4EhZqXZUJf_4de-jm5ZhMlqvQ7ZVWKf9ROWZTG9T7N1Yuo3DBgNeUFW6j1A1Q6HQ4mGY69Se_3Gt4eGnTwMQbsb3ekIJfkyJQcuSRHpuQk_NVdX27hv1FJQH4AYiq5HYY7yzwk-AdMI863</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940953439</pqid></control><display><type>article</type><title>Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development</title><source>Springer Nature</source><creator>Han, B ; Park, H K ; Ching, T ; Panneerselvam, J ; Wang, H ; Shen, Y ; Zhang, J ; Li, L ; Che, R ; Garmire, L ; Fei, P</creator><creatorcontrib>Han, B ; Park, H K ; Ching, T ; Panneerselvam, J ; Wang, H ; Shen, Y ; Zhang, J ; Li, L ; Che, R ; Garmire, L ; Fei, P</creatorcontrib><description>The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both
in vitro
and
in vivo
. Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2017.150</identifier><identifier>PMID: 28504715</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/31 ; 13/89 ; 14/19 ; 38/77 ; 38/91 ; 59/5 ; 631/337/1645/1792 ; 631/67/327 ; 82/16 ; 96/2 ; Alternative Splicing ; Apoptosis ; Cancer ; Carcinogenesis ; Cell Biology ; Cell Hypoxia - physiology ; Cell Line, Tumor ; Enzymes ; Exon skipping ; Exons ; Gene expression ; Genetic aspects ; Health aspects ; Human Genetics ; Humans ; Hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1 - genetics ; Hypoxia-Inducible Factor 1 - metabolism ; Hypoxia-inducible factors ; Internal Medicine ; Introns ; Medicine ; Medicine & Public Health ; Neoplasia ; Neoplasms - enzymology ; Neoplasms - genetics ; Neoplasms - metabolism ; Oncogenes ; Oncology ; Original ; original-article ; p53 Protein ; Ribonucleic acid ; Ribonucleoproteins ; Ribonucleoproteins, Small Nuclear - genetics ; Ribonucleoproteins, Small Nuclear - metabolism ; RNA ; RNA Nucleotidyltransferases - biosynthesis ; RNA Nucleotidyltransferases - genetics ; RNA Nucleotidyltransferases - metabolism ; RNA processing ; RNA Splicing ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumorigenesis ; Tumors</subject><ispartof>Oncogene, 2017-09, Vol.36 (38), p.5382-5391</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 21, 2017</rights><rights>Copyright © 2017 The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3</citedby><cites>FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3</cites><orcidid>0000-0002-0818-409X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28504715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, B</creatorcontrib><creatorcontrib>Park, H K</creatorcontrib><creatorcontrib>Ching, T</creatorcontrib><creatorcontrib>Panneerselvam, J</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Shen, Y</creatorcontrib><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Li, L</creatorcontrib><creatorcontrib>Che, R</creatorcontrib><creatorcontrib>Garmire, L</creatorcontrib><creatorcontrib>Fei, P</creatorcontrib><title>Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both
in vitro
and
in vivo
. Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.</description><subject>13/109</subject><subject>13/31</subject><subject>13/89</subject><subject>14/19</subject><subject>38/77</subject><subject>38/91</subject><subject>59/5</subject><subject>631/337/1645/1792</subject><subject>631/67/327</subject><subject>82/16</subject><subject>96/2</subject><subject>Alternative Splicing</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Cell Biology</subject><subject>Cell Hypoxia - physiology</subject><subject>Cell Line, Tumor</subject><subject>Enzymes</subject><subject>Exon skipping</subject><subject>Exons</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1 - genetics</subject><subject>Hypoxia-Inducible Factor 1 - metabolism</subject><subject>Hypoxia-inducible factors</subject><subject>Internal Medicine</subject><subject>Introns</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neoplasia</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Oncogenes</subject><subject>Oncology</subject><subject>Original</subject><subject>original-article</subject><subject>p53 Protein</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins</subject><subject>Ribonucleoproteins, Small Nuclear - genetics</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>RNA</subject><subject>RNA Nucleotidyltransferases - biosynthesis</subject><subject>RNA Nucleotidyltransferases - genetics</subject><subject>RNA Nucleotidyltransferases - metabolism</subject><subject>RNA processing</subject><subject>RNA Splicing</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkk9v1DAQxSMEokvhxhlZ4sKBLOMkTuwL0lL-FKkqaAVny3EmW1eOHexkpX4DPjZOt5QWVT5Y8vzmjeb5ZdlLCmsKJX_nnV4XQJs1ZfAoW9GqqXPGRPU4W4FgkIuiLI6yZzFeAkAjoHiaHRWcQdVQtsp-n86DcuTjhy0lg-9mqyaMZLpAElBfaWvcjvieRLc9_57ePVF9j3oiyk4YnJrMHsn2fEPiaI1eYOU6or2bgmnnayl_rRbncQwYo_Fu0dPKaQykwz1aPw7opufZk17ZiC9u7uPs5-dPP05O87NvX76ebM5yzXg55T12rFFN2xYNNLxQQoPogGmBAC3Qquad4o3uu4JTQbHioDqdLNEASDWq8jh7f9Ad53bATqfRQVk5BjOocCW9MvJ-xZkLufN7yWrgdcmTwJsbgeB_zRgnOZio0Vrl0M9RUi4EhZqXZUJf_4de-jm5ZhMlqvQ7ZVWKf9ROWZTG9T7N1Yuo3DBgNeUFW6j1A1Q6HQ4mGY69Se_3Gt4eGnTwMQbsb3ekIJfkyJQcuSRHpuQk_NVdX27hv1FJQH4AYiq5HYY7yzwk-AdMI863</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>Han, B</creator><creator>Park, H K</creator><creator>Ching, T</creator><creator>Panneerselvam, J</creator><creator>Wang, H</creator><creator>Shen, Y</creator><creator>Zhang, J</creator><creator>Li, L</creator><creator>Che, R</creator><creator>Garmire, L</creator><creator>Fei, P</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0818-409X</orcidid></search><sort><creationdate>20170921</creationdate><title>Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development</title><author>Han, B ; Park, H K ; Ching, T ; Panneerselvam, J ; Wang, H ; Shen, Y ; Zhang, J ; Li, L ; Che, R ; Garmire, L ; Fei, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/109</topic><topic>13/31</topic><topic>13/89</topic><topic>14/19</topic><topic>38/77</topic><topic>38/91</topic><topic>59/5</topic><topic>631/337/1645/1792</topic><topic>631/67/327</topic><topic>82/16</topic><topic>96/2</topic><topic>Alternative Splicing</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Cell Biology</topic><topic>Cell Hypoxia - physiology</topic><topic>Cell Line, Tumor</topic><topic>Enzymes</topic><topic>Exon skipping</topic><topic>Exons</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1 - genetics</topic><topic>Hypoxia-Inducible Factor 1 - metabolism</topic><topic>Hypoxia-inducible factors</topic><topic>Internal Medicine</topic><topic>Introns</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neoplasia</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Oncogenes</topic><topic>Oncology</topic><topic>Original</topic><topic>original-article</topic><topic>p53 Protein</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins</topic><topic>Ribonucleoproteins, Small Nuclear - genetics</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>RNA</topic><topic>RNA Nucleotidyltransferases - biosynthesis</topic><topic>RNA Nucleotidyltransferases - genetics</topic><topic>RNA Nucleotidyltransferases - metabolism</topic><topic>RNA processing</topic><topic>RNA Splicing</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, B</creatorcontrib><creatorcontrib>Park, H K</creatorcontrib><creatorcontrib>Ching, T</creatorcontrib><creatorcontrib>Panneerselvam, J</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Shen, Y</creatorcontrib><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Li, L</creatorcontrib><creatorcontrib>Che, R</creatorcontrib><creatorcontrib>Garmire, L</creatorcontrib><creatorcontrib>Fei, P</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, B</au><au>Park, H K</au><au>Ching, T</au><au>Panneerselvam, J</au><au>Wang, H</au><au>Shen, Y</au><au>Zhang, J</au><au>Li, L</au><au>Che, R</au><au>Garmire, L</au><au>Fei, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2017-09-21</date><risdate>2017</risdate><volume>36</volume><issue>38</issue><spage>5382</spage><epage>5391</epage><pages>5382-5391</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both
in vitro
and
in vivo
. Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28504715</pmid><doi>10.1038/onc.2017.150</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0818-409X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2017-09, Vol.36 (38), p.5382-5391 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5608638 |
source | Springer Nature |
subjects | 13/109 13/31 13/89 14/19 38/77 38/91 59/5 631/337/1645/1792 631/67/327 82/16 96/2 Alternative Splicing Apoptosis Cancer Carcinogenesis Cell Biology Cell Hypoxia - physiology Cell Line, Tumor Enzymes Exon skipping Exons Gene expression Genetic aspects Health aspects Human Genetics Humans Hypoxia-inducible factor 1 Hypoxia-Inducible Factor 1 - genetics Hypoxia-Inducible Factor 1 - metabolism Hypoxia-inducible factors Internal Medicine Introns Medicine Medicine & Public Health Neoplasia Neoplasms - enzymology Neoplasms - genetics Neoplasms - metabolism Oncogenes Oncology Original original-article p53 Protein Ribonucleic acid Ribonucleoproteins Ribonucleoproteins, Small Nuclear - genetics Ribonucleoproteins, Small Nuclear - metabolism RNA RNA Nucleotidyltransferases - biosynthesis RNA Nucleotidyltransferases - genetics RNA Nucleotidyltransferases - metabolism RNA processing RNA Splicing Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Tumorigenesis Tumors |
title | Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20DBR1%20modulates%20the%20recycling%20of%20snRNPs%20to%20affect%20alternative%20RNA%20splicing%20and%20contributes%20to%20the%20suppression%20of%20cancer%20development&rft.jtitle=Oncogene&rft.au=Han,%20B&rft.date=2017-09-21&rft.volume=36&rft.issue=38&rft.spage=5382&rft.epage=5391&rft.pages=5382-5391&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2017.150&rft_dat=%3Cgale_pubme%3EA505618259%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-fed57a7bb270782a9c09d05c9e00b01468da87cfd28191e480adc476c00e1cea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1940953439&rft_id=info:pmid/28504715&rft_galeid=A505618259&rfr_iscdi=true |