Loading…
Aripiprazole and Riluzole treatment alters behavior and neurometabolites in young ADHD rats: a longitudinal 1H-NMR spectroscopy study at 11.7T
Attention deficit hyperactivity disorder (ADHD), Tourette syndrome (TS) as well as obsessive compulsive disorder (OCD) are co-occurring neurodevelopmental diseases that share alterations of frontocortical neurometabolites. In this longitudinal study we investigated the behavioral and neurochemical e...
Saved in:
Published in: | Translational psychiatry 2017-08, Vol.7 (8), p.e1189-e1189 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Attention deficit hyperactivity disorder (ADHD), Tourette syndrome (TS) as well as obsessive compulsive disorder (OCD) are co-occurring neurodevelopmental diseases that share alterations of frontocortical neurometabolites. In this longitudinal study we investigated the behavioral and neurochemical effects of aripiprazole and riluzole treatment in juvenile spontaneously hypertensive rats (SHR), a model for ADHD. For neurochemical analysis we employed
in vivo
magnetic resonance spectroscopy (MRS). Spectra from voxels located at the central striatum and prefrontal cortex were acquired postnatally from day 35 to 50. In the SHR strain only, treatments reduced repetitive grooming and climbing behavior. The absolute quantification of cerebral metabolites
in vivo
using localized
1
H-MRS at 11.7T showed significant alterations in SHR rats compared to controls (including glutamine, aspartate and total NAA). In addition, drug treatment reduced the majority of the detected metabolites (glutamate and glutamine) in the SHR brain. Our results indicate that the drug treatments might influence the hypothesized ‘hyperactive’ state of the cortico-striatal-thalamo-cortical circuitries of the SHR strain. Furthermore, we could show that behavioral changes correlate with brain region-specific alterations in neurometabolite levels
in vivo
. These findings should serve as reference for animal studies and for the analysis of neurometabolites in selected human brain regions to further define neurochemical alterations in neuropsychiatric diseases. |
---|---|
ISSN: | 2158-3188 2158-3188 |
DOI: | 10.1038/tp.2017.167 |