Loading…
Endoplasmic reticulum oxidase 1α is critical for collagen secretion from and membrane type 1-matrix metalloproteinase levels in hepatic stellate cells
Upon liver injury, excessive deposition of collagen from activated hepatic stellate cells (HSCs) is a leading cause of liver fibrosis. An understanding of the mechanism by which collagen biosynthesis is regulated in HSCs will provide important clues for practical anti-fibrotic therapy. Endoplasmic r...
Saved in:
Published in: | The Journal of biological chemistry 2017-09, Vol.292 (38), p.15649-15660 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Upon liver injury, excessive deposition of collagen from activated hepatic stellate cells (HSCs) is a leading cause of liver fibrosis. An understanding of the mechanism by which collagen biosynthesis is regulated in HSCs will provide important clues for practical anti-fibrotic therapy. Endoplasmic reticulum oxidase 1α (ERO1α) functions as an oxidative enzyme of protein disulfide isomerase, which forms intramolecular disulfide bonds of membrane and secreted proteins. However, the role of ERO1α in HSCs remains unclear. Here, we show that ERO1α is expressed and mainly localized in the endoplasmic reticulum in human HSCs. When HSCs were transfected with ERO1α siRNA or an ERO1α shRNA-expressing plasmid, expression of ERO1α was completely silenced. Silencing of ERO1α expression in HSCs markedly suppressed their proliferation but did not induce apoptosis, which was accompanied by impaired secretion of collagen type 1. Silencing of ERO1α expression induced impaired disulfide bond formation and inhibited autophagy via activation of the Akt/mammalian target of rapamycin signaling pathway, resulting in intracellular accumulation of collagen type 1 in HSCs. Furthermore, silencing of ERO1α expression also promoted proteasome-dependent degradation of membrane type 1-matrix metalloproteinase (MT1-MMP), which stimulates cell proliferation through cleavage of secreted collagens. The inhibition of HSC proliferation was reversed by treatment with MT1-MMP–cleaved collagen type 1. The results suggest that ERO1α plays a crucial role in HSC proliferation via posttranslational modification of collagen and MT1-MMP and, therefore, may be a suitable therapeutic target for managing liver fibrosis. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M117.783126 |