Loading…
Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material
Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2017-02, Vol.93 (3), p.632-645.e6 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83 |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83 |
container_end_page | 645.e6 |
container_issue | 3 |
container_start_page | 632 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 93 |
creator | Ryglewski, Stefanie Vonhoff, Fernando Scheckel, Kathryn Duch, Carsten |
description | Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations.
[Display omitted]
•Synaptic activity can direct postsynaptic arbor formation during dendritic growth•Competition of GABAergic and cholinergic synaptic inputs redistributes dendrites•Local dendritic calcium signaling is required for dendrite redistributions•Perturbations of correct input partitioning cause defects in fine motor control
Ryglewski et al. report that competitive mechanisms are required to correctly partition synaptic inputs from different transmitter systems on the dendritic arbor of a Drosophila motoneuron. Perturbations cause dendrite shifts and result in defects of adaptive motor control. |
doi_str_mv | 10.1016/j.neuron.2016.12.043 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5614441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731631042X</els_id><sourcerecordid>4315589601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EotPCP0DIEhs2CfFz4g1SGQpUKgIJWFse-7r1KLEH2xmp_56EKeWxYHVl-bvHPucg9Ix0LemIfLVrI0w5xZbOp5bQtuPsAVqRTq0bTpR6iFZdr2Qj6ZqdoNNSdl1HuFDkMTqhPWG0Z3SF3GWs2TRHKTPgTRr3UEMNKWKfMv5yG82-Bos_m1wj5DITsUA-QMH1BvD5mKZYcfL4LUSXw4K-mcLgQrzGH02FHMzwBD3yZijw9G6eoW_vLr5uPjRXn95fbs6vGssVqQ045QBs7zoHYmuF4ltPQHph2ZYtEzxz1HpKjALBpCFcgvNKCuGFtz07Q6-PuvtpO4KzsHgb9D6H0eRbnUzQf9_EcKOv00ELSTjnZBZ4eSeQ0_cJStVjKBaGwURIU9Gkl1QxJdWCvvgH3aUpzxH-pJTiaynkTPEjZXMqJYO__wzp9FKj3ulj9nqpUROq5xrnted_Grlf-tXbb6cwx3kIkHWxAaIFFzLYql0K_3_hB83EtBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869947656</pqid></control><display><type>article</type><title>Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Ryglewski, Stefanie ; Vonhoff, Fernando ; Scheckel, Kathryn ; Duch, Carsten</creator><creatorcontrib>Ryglewski, Stefanie ; Vonhoff, Fernando ; Scheckel, Kathryn ; Duch, Carsten</creatorcontrib><description>Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations.
[Display omitted]
•Synaptic activity can direct postsynaptic arbor formation during dendritic growth•Competition of GABAergic and cholinergic synaptic inputs redistributes dendrites•Local dendritic calcium signaling is required for dendrite redistributions•Perturbations of correct input partitioning cause defects in fine motor control
Ryglewski et al. report that competitive mechanisms are required to correctly partition synaptic inputs from different transmitter systems on the dendritic arbor of a Drosophila motoneuron. Perturbations cause dendrite shifts and result in defects of adaptive motor control.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2016.12.043</identifier><identifier>PMID: 28132832</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acetylcholine ; Acetylcholine - metabolism ; Animals ; Calcium Channels, T-Type - metabolism ; Calcium Signaling ; Chromosomes ; competition ; dendrite ; Dendrites - metabolism ; Dendrites - physiology ; development ; Drosophila ; Drosophila Proteins - metabolism ; excitation inhibition balance ; flight ; GABA ; gamma-Aminobutyric Acid - metabolism ; Genetic engineering ; Insects ; Morphology ; motoneuron ; Neuronal Plasticity ; Neurons ; Neurons - metabolism ; Neurons - physiology ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - physiology ; Receptors, GABA-A - metabolism ; Receptors, Nicotinic - metabolism ; Software ; synapse ; Synapses - metabolism ; Synapses - physiology ; Transmitters</subject><ispartof>Neuron (Cambridge, Mass.), 2017-02, Vol.93 (3), p.632-645.e6</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 8, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83</citedby><cites>FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28132832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryglewski, Stefanie</creatorcontrib><creatorcontrib>Vonhoff, Fernando</creatorcontrib><creatorcontrib>Scheckel, Kathryn</creatorcontrib><creatorcontrib>Duch, Carsten</creatorcontrib><title>Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations.
[Display omitted]
•Synaptic activity can direct postsynaptic arbor formation during dendritic growth•Competition of GABAergic and cholinergic synaptic inputs redistributes dendrites•Local dendritic calcium signaling is required for dendrite redistributions•Perturbations of correct input partitioning cause defects in fine motor control
Ryglewski et al. report that competitive mechanisms are required to correctly partition synaptic inputs from different transmitter systems on the dendritic arbor of a Drosophila motoneuron. Perturbations cause dendrite shifts and result in defects of adaptive motor control.</description><subject>acetylcholine</subject><subject>Acetylcholine - metabolism</subject><subject>Animals</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Calcium Signaling</subject><subject>Chromosomes</subject><subject>competition</subject><subject>dendrite</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - physiology</subject><subject>development</subject><subject>Drosophila</subject><subject>Drosophila Proteins - metabolism</subject><subject>excitation inhibition balance</subject><subject>flight</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Genetic engineering</subject><subject>Insects</subject><subject>Morphology</subject><subject>motoneuron</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - physiology</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>Software</subject><subject>synapse</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><subject>Transmitters</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EotPCP0DIEhs2CfFz4g1SGQpUKgIJWFse-7r1KLEH2xmp_56EKeWxYHVl-bvHPucg9Ix0LemIfLVrI0w5xZbOp5bQtuPsAVqRTq0bTpR6iFZdr2Qj6ZqdoNNSdl1HuFDkMTqhPWG0Z3SF3GWs2TRHKTPgTRr3UEMNKWKfMv5yG82-Bos_m1wj5DITsUA-QMH1BvD5mKZYcfL4LUSXw4K-mcLgQrzGH02FHMzwBD3yZijw9G6eoW_vLr5uPjRXn95fbs6vGssVqQ045QBs7zoHYmuF4ltPQHph2ZYtEzxz1HpKjALBpCFcgvNKCuGFtz07Q6-PuvtpO4KzsHgb9D6H0eRbnUzQf9_EcKOv00ELSTjnZBZ4eSeQ0_cJStVjKBaGwURIU9Gkl1QxJdWCvvgH3aUpzxH-pJTiaynkTPEjZXMqJYO__wzp9FKj3ulj9nqpUROq5xrnted_Grlf-tXbb6cwx3kIkHWxAaIFFzLYql0K_3_hB83EtBQ</recordid><startdate>20170208</startdate><enddate>20170208</enddate><creator>Ryglewski, Stefanie</creator><creator>Vonhoff, Fernando</creator><creator>Scheckel, Kathryn</creator><creator>Duch, Carsten</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170208</creationdate><title>Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material</title><author>Ryglewski, Stefanie ; Vonhoff, Fernando ; Scheckel, Kathryn ; Duch, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>acetylcholine</topic><topic>Acetylcholine - metabolism</topic><topic>Animals</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Calcium Signaling</topic><topic>Chromosomes</topic><topic>competition</topic><topic>dendrite</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - physiology</topic><topic>development</topic><topic>Drosophila</topic><topic>Drosophila Proteins - metabolism</topic><topic>excitation inhibition balance</topic><topic>flight</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Genetic engineering</topic><topic>Insects</topic><topic>Morphology</topic><topic>motoneuron</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - physiology</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>Software</topic><topic>synapse</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryglewski, Stefanie</creatorcontrib><creatorcontrib>Vonhoff, Fernando</creatorcontrib><creatorcontrib>Scheckel, Kathryn</creatorcontrib><creatorcontrib>Duch, Carsten</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryglewski, Stefanie</au><au>Vonhoff, Fernando</au><au>Scheckel, Kathryn</au><au>Duch, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-02-08</date><risdate>2017</risdate><volume>93</volume><issue>3</issue><spage>632</spage><epage>645.e6</epage><pages>632-645.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations.
[Display omitted]
•Synaptic activity can direct postsynaptic arbor formation during dendritic growth•Competition of GABAergic and cholinergic synaptic inputs redistributes dendrites•Local dendritic calcium signaling is required for dendrite redistributions•Perturbations of correct input partitioning cause defects in fine motor control
Ryglewski et al. report that competitive mechanisms are required to correctly partition synaptic inputs from different transmitter systems on the dendritic arbor of a Drosophila motoneuron. Perturbations cause dendrite shifts and result in defects of adaptive motor control.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28132832</pmid><doi>10.1016/j.neuron.2016.12.043</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2017-02, Vol.93 (3), p.632-645.e6 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5614441 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | acetylcholine Acetylcholine - metabolism Animals Calcium Channels, T-Type - metabolism Calcium Signaling Chromosomes competition dendrite Dendrites - metabolism Dendrites - physiology development Drosophila Drosophila Proteins - metabolism excitation inhibition balance flight GABA gamma-Aminobutyric Acid - metabolism Genetic engineering Insects Morphology motoneuron Neuronal Plasticity Neurons Neurons - metabolism Neurons - physiology Presynaptic Terminals - metabolism Presynaptic Terminals - physiology Receptors, GABA-A - metabolism Receptors, Nicotinic - metabolism Software synapse Synapses - metabolism Synapses - physiology Transmitters |
title | Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intra-neuronal%20Competition%20for%20Synaptic%20Partners%20Conserves%20the%20Amount%20of%20Dendritic%20Building%20Material&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Ryglewski,%20Stefanie&rft.date=2017-02-08&rft.volume=93&rft.issue=3&rft.spage=632&rft.epage=645.e6&rft.pages=632-645.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2016.12.043&rft_dat=%3Cproquest_pubme%3E4315589601%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1869947656&rft_id=info:pmid/28132832&rfr_iscdi=true |