Loading…

Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material

Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2017-02, Vol.93 (3), p.632-645.e6
Main Authors: Ryglewski, Stefanie, Vonhoff, Fernando, Scheckel, Kathryn, Duch, Carsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83
cites cdi_FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83
container_end_page 645.e6
container_issue 3
container_start_page 632
container_title Neuron (Cambridge, Mass.)
container_volume 93
creator Ryglewski, Stefanie
Vonhoff, Fernando
Scheckel, Kathryn
Duch, Carsten
description Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations. [Display omitted] •Synaptic activity can direct postsynaptic arbor formation during dendritic growth•Competition of GABAergic and cholinergic synaptic inputs redistributes dendrites•Local dendritic calcium signaling is required for dendrite redistributions•Perturbations of correct input partitioning cause defects in fine motor control Ryglewski et al. report that competitive mechanisms are required to correctly partition synaptic inputs from different transmitter systems on the dendritic arbor of a Drosophila motoneuron. Perturbations cause dendrite shifts and result in defects of adaptive motor control.
doi_str_mv 10.1016/j.neuron.2016.12.043
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5614441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731631042X</els_id><sourcerecordid>4315589601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EotPCP0DIEhs2CfFz4g1SGQpUKgIJWFse-7r1KLEH2xmp_56EKeWxYHVl-bvHPucg9Ix0LemIfLVrI0w5xZbOp5bQtuPsAVqRTq0bTpR6iFZdr2Qj6ZqdoNNSdl1HuFDkMTqhPWG0Z3SF3GWs2TRHKTPgTRr3UEMNKWKfMv5yG82-Bos_m1wj5DITsUA-QMH1BvD5mKZYcfL4LUSXw4K-mcLgQrzGH02FHMzwBD3yZijw9G6eoW_vLr5uPjRXn95fbs6vGssVqQ045QBs7zoHYmuF4ltPQHph2ZYtEzxz1HpKjALBpCFcgvNKCuGFtz07Q6-PuvtpO4KzsHgb9D6H0eRbnUzQf9_EcKOv00ELSTjnZBZ4eSeQ0_cJStVjKBaGwURIU9Gkl1QxJdWCvvgH3aUpzxH-pJTiaynkTPEjZXMqJYO__wzp9FKj3ulj9nqpUROq5xrnted_Grlf-tXbb6cwx3kIkHWxAaIFFzLYql0K_3_hB83EtBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869947656</pqid></control><display><type>article</type><title>Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Ryglewski, Stefanie ; Vonhoff, Fernando ; Scheckel, Kathryn ; Duch, Carsten</creator><creatorcontrib>Ryglewski, Stefanie ; Vonhoff, Fernando ; Scheckel, Kathryn ; Duch, Carsten</creatorcontrib><description>Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations. [Display omitted] •Synaptic activity can direct postsynaptic arbor formation during dendritic growth•Competition of GABAergic and cholinergic synaptic inputs redistributes dendrites•Local dendritic calcium signaling is required for dendrite redistributions•Perturbations of correct input partitioning cause defects in fine motor control Ryglewski et al. report that competitive mechanisms are required to correctly partition synaptic inputs from different transmitter systems on the dendritic arbor of a Drosophila motoneuron. Perturbations cause dendrite shifts and result in defects of adaptive motor control.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2016.12.043</identifier><identifier>PMID: 28132832</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acetylcholine ; Acetylcholine - metabolism ; Animals ; Calcium Channels, T-Type - metabolism ; Calcium Signaling ; Chromosomes ; competition ; dendrite ; Dendrites - metabolism ; Dendrites - physiology ; development ; Drosophila ; Drosophila Proteins - metabolism ; excitation inhibition balance ; flight ; GABA ; gamma-Aminobutyric Acid - metabolism ; Genetic engineering ; Insects ; Morphology ; motoneuron ; Neuronal Plasticity ; Neurons ; Neurons - metabolism ; Neurons - physiology ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - physiology ; Receptors, GABA-A - metabolism ; Receptors, Nicotinic - metabolism ; Software ; synapse ; Synapses - metabolism ; Synapses - physiology ; Transmitters</subject><ispartof>Neuron (Cambridge, Mass.), 2017-02, Vol.93 (3), p.632-645.e6</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 8, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83</citedby><cites>FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28132832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryglewski, Stefanie</creatorcontrib><creatorcontrib>Vonhoff, Fernando</creatorcontrib><creatorcontrib>Scheckel, Kathryn</creatorcontrib><creatorcontrib>Duch, Carsten</creatorcontrib><title>Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations. [Display omitted] •Synaptic activity can direct postsynaptic arbor formation during dendritic growth•Competition of GABAergic and cholinergic synaptic inputs redistributes dendrites•Local dendritic calcium signaling is required for dendrite redistributions•Perturbations of correct input partitioning cause defects in fine motor control Ryglewski et al. report that competitive mechanisms are required to correctly partition synaptic inputs from different transmitter systems on the dendritic arbor of a Drosophila motoneuron. Perturbations cause dendrite shifts and result in defects of adaptive motor control.</description><subject>acetylcholine</subject><subject>Acetylcholine - metabolism</subject><subject>Animals</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Calcium Signaling</subject><subject>Chromosomes</subject><subject>competition</subject><subject>dendrite</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - physiology</subject><subject>development</subject><subject>Drosophila</subject><subject>Drosophila Proteins - metabolism</subject><subject>excitation inhibition balance</subject><subject>flight</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Genetic engineering</subject><subject>Insects</subject><subject>Morphology</subject><subject>motoneuron</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - physiology</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>Software</subject><subject>synapse</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><subject>Transmitters</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EotPCP0DIEhs2CfFz4g1SGQpUKgIJWFse-7r1KLEH2xmp_56EKeWxYHVl-bvHPucg9Ix0LemIfLVrI0w5xZbOp5bQtuPsAVqRTq0bTpR6iFZdr2Qj6ZqdoNNSdl1HuFDkMTqhPWG0Z3SF3GWs2TRHKTPgTRr3UEMNKWKfMv5yG82-Bos_m1wj5DITsUA-QMH1BvD5mKZYcfL4LUSXw4K-mcLgQrzGH02FHMzwBD3yZijw9G6eoW_vLr5uPjRXn95fbs6vGssVqQ045QBs7zoHYmuF4ltPQHph2ZYtEzxz1HpKjALBpCFcgvNKCuGFtz07Q6-PuvtpO4KzsHgb9D6H0eRbnUzQf9_EcKOv00ELSTjnZBZ4eSeQ0_cJStVjKBaGwURIU9Gkl1QxJdWCvvgH3aUpzxH-pJTiaynkTPEjZXMqJYO__wzp9FKj3ulj9nqpUROq5xrnted_Grlf-tXbb6cwx3kIkHWxAaIFFzLYql0K_3_hB83EtBQ</recordid><startdate>20170208</startdate><enddate>20170208</enddate><creator>Ryglewski, Stefanie</creator><creator>Vonhoff, Fernando</creator><creator>Scheckel, Kathryn</creator><creator>Duch, Carsten</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170208</creationdate><title>Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material</title><author>Ryglewski, Stefanie ; Vonhoff, Fernando ; Scheckel, Kathryn ; Duch, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>acetylcholine</topic><topic>Acetylcholine - metabolism</topic><topic>Animals</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Calcium Signaling</topic><topic>Chromosomes</topic><topic>competition</topic><topic>dendrite</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - physiology</topic><topic>development</topic><topic>Drosophila</topic><topic>Drosophila Proteins - metabolism</topic><topic>excitation inhibition balance</topic><topic>flight</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Genetic engineering</topic><topic>Insects</topic><topic>Morphology</topic><topic>motoneuron</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - physiology</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>Software</topic><topic>synapse</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryglewski, Stefanie</creatorcontrib><creatorcontrib>Vonhoff, Fernando</creatorcontrib><creatorcontrib>Scheckel, Kathryn</creatorcontrib><creatorcontrib>Duch, Carsten</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryglewski, Stefanie</au><au>Vonhoff, Fernando</au><au>Scheckel, Kathryn</au><au>Duch, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-02-08</date><risdate>2017</risdate><volume>93</volume><issue>3</issue><spage>632</spage><epage>645.e6</epage><pages>632-645.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations. [Display omitted] •Synaptic activity can direct postsynaptic arbor formation during dendritic growth•Competition of GABAergic and cholinergic synaptic inputs redistributes dendrites•Local dendritic calcium signaling is required for dendrite redistributions•Perturbations of correct input partitioning cause defects in fine motor control Ryglewski et al. report that competitive mechanisms are required to correctly partition synaptic inputs from different transmitter systems on the dendritic arbor of a Drosophila motoneuron. Perturbations cause dendrite shifts and result in defects of adaptive motor control.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28132832</pmid><doi>10.1016/j.neuron.2016.12.043</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2017-02, Vol.93 (3), p.632-645.e6
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5614441
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects acetylcholine
Acetylcholine - metabolism
Animals
Calcium Channels, T-Type - metabolism
Calcium Signaling
Chromosomes
competition
dendrite
Dendrites - metabolism
Dendrites - physiology
development
Drosophila
Drosophila Proteins - metabolism
excitation inhibition balance
flight
GABA
gamma-Aminobutyric Acid - metabolism
Genetic engineering
Insects
Morphology
motoneuron
Neuronal Plasticity
Neurons
Neurons - metabolism
Neurons - physiology
Presynaptic Terminals - metabolism
Presynaptic Terminals - physiology
Receptors, GABA-A - metabolism
Receptors, Nicotinic - metabolism
Software
synapse
Synapses - metabolism
Synapses - physiology
Transmitters
title Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intra-neuronal%20Competition%20for%20Synaptic%20Partners%20Conserves%20the%20Amount%20of%20Dendritic%20Building%20Material&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Ryglewski,%20Stefanie&rft.date=2017-02-08&rft.volume=93&rft.issue=3&rft.spage=632&rft.epage=645.e6&rft.pages=632-645.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2016.12.043&rft_dat=%3Cproquest_pubme%3E4315589601%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-ed9deec8d0de5bc594bf1e6f5c3b3e6f5ef3d2cf21a9e536a146edf9655f5fc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1869947656&rft_id=info:pmid/28132832&rfr_iscdi=true