Loading…

X Chromosome Evolution in Cetartiodactyla

The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chro...

Full description

Saved in:
Bibliographic Details
Published in:Genes 2017-08, Vol.8 (9), p.216
Main Authors: Proskuryakova, Anastasia A, Kulemzina, Anastasia I, Perelman, Polina L, Makunin, Alexey I, Larkin, Denis M, Farré, Marta, Kukekova, Anna V, Lynn Johnson, Jennifer, Lemskaya, Natalya A, Beklemisheva, Violetta R, Roelke-Parker, Melody E, Bellizzi, June, Ryder, Oliver A, O'Brien, Stephen J, Graphodatsky, Alexander S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-579938283354ccd750a24a796d1dad227a856c8c4ae8ec4fb4c70403ec147a2f3
cites cdi_FETCH-LOGICAL-c384t-579938283354ccd750a24a796d1dad227a856c8c4ae8ec4fb4c70403ec147a2f3
container_end_page
container_issue 9
container_start_page 216
container_title Genes
container_volume 8
creator Proskuryakova, Anastasia A
Kulemzina, Anastasia I
Perelman, Polina L
Makunin, Alexey I
Larkin, Denis M
Farré, Marta
Kukekova, Anna V
Lynn Johnson, Jennifer
Lemskaya, Natalya A
Beklemisheva, Violetta R
Roelke-Parker, Melody E
Bellizzi, June
Ryder, Oliver A
O'Brien, Stephen J
Graphodatsky, Alexander S
description The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.
doi_str_mv 10.3390/genes8090216
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5615350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934286842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-579938283354ccd750a24a796d1dad227a856c8c4ae8ec4fb4c70403ec147a2f3</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxRdRbKm9eZYcFYzuZ3ZzESTUDyh4UfC2TDebNpJk625S6H_vSmupc5kZ5sebx0PokuA7xnJ8v7SdDQrnmJLsBI0plizlnIrTo3mEpiF84VgcU4zFORpRpYSKwBjdfCbFyrvWBdfaZLZxzdDXrkvqLilsDz4uJZh-28AFOqugCXa67xP08TR7L17S-dvza_E4Tw1TvE-FzHOmqGJMcGNKKTBQDjLPSlJCSakEJTKjDAerrOHVghsZjTFrCJdAKzZBDzvd9bBobWls13to9NrXLfitdlDr_5euXuml22iREcEEjgLXewHvvgcbet3Wwdimgc66IWiSM05VpjiN6O0ONd6F4G11eEOw_g1YHwcc8atjawf4L072A9hodqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934286842</pqid></control><display><type>article</type><title>X Chromosome Evolution in Cetartiodactyla</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Proskuryakova, Anastasia A ; Kulemzina, Anastasia I ; Perelman, Polina L ; Makunin, Alexey I ; Larkin, Denis M ; Farré, Marta ; Kukekova, Anna V ; Lynn Johnson, Jennifer ; Lemskaya, Natalya A ; Beklemisheva, Violetta R ; Roelke-Parker, Melody E ; Bellizzi, June ; Ryder, Oliver A ; O'Brien, Stephen J ; Graphodatsky, Alexander S</creator><creatorcontrib>Proskuryakova, Anastasia A ; Kulemzina, Anastasia I ; Perelman, Polina L ; Makunin, Alexey I ; Larkin, Denis M ; Farré, Marta ; Kukekova, Anna V ; Lynn Johnson, Jennifer ; Lemskaya, Natalya A ; Beklemisheva, Violetta R ; Roelke-Parker, Melody E ; Bellizzi, June ; Ryder, Oliver A ; O'Brien, Stephen J ; Graphodatsky, Alexander S</creatorcontrib><description>The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes8090216</identifier><identifier>PMID: 28858207</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><ispartof>Genes, 2017-08, Vol.8 (9), p.216</ispartof><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-579938283354ccd750a24a796d1dad227a856c8c4ae8ec4fb4c70403ec147a2f3</citedby><cites>FETCH-LOGICAL-c384t-579938283354ccd750a24a796d1dad227a856c8c4ae8ec4fb4c70403ec147a2f3</cites><orcidid>0000-0001-9170-5767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28858207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Proskuryakova, Anastasia A</creatorcontrib><creatorcontrib>Kulemzina, Anastasia I</creatorcontrib><creatorcontrib>Perelman, Polina L</creatorcontrib><creatorcontrib>Makunin, Alexey I</creatorcontrib><creatorcontrib>Larkin, Denis M</creatorcontrib><creatorcontrib>Farré, Marta</creatorcontrib><creatorcontrib>Kukekova, Anna V</creatorcontrib><creatorcontrib>Lynn Johnson, Jennifer</creatorcontrib><creatorcontrib>Lemskaya, Natalya A</creatorcontrib><creatorcontrib>Beklemisheva, Violetta R</creatorcontrib><creatorcontrib>Roelke-Parker, Melody E</creatorcontrib><creatorcontrib>Bellizzi, June</creatorcontrib><creatorcontrib>Ryder, Oliver A</creatorcontrib><creatorcontrib>O'Brien, Stephen J</creatorcontrib><creatorcontrib>Graphodatsky, Alexander S</creatorcontrib><title>X Chromosome Evolution in Cetartiodactyla</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.</description><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkM1Lw0AQxRdRbKm9eZYcFYzuZ3ZzESTUDyh4UfC2TDebNpJk625S6H_vSmupc5kZ5sebx0PokuA7xnJ8v7SdDQrnmJLsBI0plizlnIrTo3mEpiF84VgcU4zFORpRpYSKwBjdfCbFyrvWBdfaZLZxzdDXrkvqLilsDz4uJZh-28AFOqugCXa67xP08TR7L17S-dvza_E4Tw1TvE-FzHOmqGJMcGNKKTBQDjLPSlJCSakEJTKjDAerrOHVghsZjTFrCJdAKzZBDzvd9bBobWls13to9NrXLfitdlDr_5euXuml22iREcEEjgLXewHvvgcbet3Wwdimgc66IWiSM05VpjiN6O0ONd6F4G11eEOw_g1YHwcc8atjawf4L072A9hodqw</recordid><startdate>20170831</startdate><enddate>20170831</enddate><creator>Proskuryakova, Anastasia A</creator><creator>Kulemzina, Anastasia I</creator><creator>Perelman, Polina L</creator><creator>Makunin, Alexey I</creator><creator>Larkin, Denis M</creator><creator>Farré, Marta</creator><creator>Kukekova, Anna V</creator><creator>Lynn Johnson, Jennifer</creator><creator>Lemskaya, Natalya A</creator><creator>Beklemisheva, Violetta R</creator><creator>Roelke-Parker, Melody E</creator><creator>Bellizzi, June</creator><creator>Ryder, Oliver A</creator><creator>O'Brien, Stephen J</creator><creator>Graphodatsky, Alexander S</creator><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9170-5767</orcidid></search><sort><creationdate>20170831</creationdate><title>X Chromosome Evolution in Cetartiodactyla</title><author>Proskuryakova, Anastasia A ; Kulemzina, Anastasia I ; Perelman, Polina L ; Makunin, Alexey I ; Larkin, Denis M ; Farré, Marta ; Kukekova, Anna V ; Lynn Johnson, Jennifer ; Lemskaya, Natalya A ; Beklemisheva, Violetta R ; Roelke-Parker, Melody E ; Bellizzi, June ; Ryder, Oliver A ; O'Brien, Stephen J ; Graphodatsky, Alexander S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-579938283354ccd750a24a796d1dad227a856c8c4ae8ec4fb4c70403ec147a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Proskuryakova, Anastasia A</creatorcontrib><creatorcontrib>Kulemzina, Anastasia I</creatorcontrib><creatorcontrib>Perelman, Polina L</creatorcontrib><creatorcontrib>Makunin, Alexey I</creatorcontrib><creatorcontrib>Larkin, Denis M</creatorcontrib><creatorcontrib>Farré, Marta</creatorcontrib><creatorcontrib>Kukekova, Anna V</creatorcontrib><creatorcontrib>Lynn Johnson, Jennifer</creatorcontrib><creatorcontrib>Lemskaya, Natalya A</creatorcontrib><creatorcontrib>Beklemisheva, Violetta R</creatorcontrib><creatorcontrib>Roelke-Parker, Melody E</creatorcontrib><creatorcontrib>Bellizzi, June</creatorcontrib><creatorcontrib>Ryder, Oliver A</creatorcontrib><creatorcontrib>O'Brien, Stephen J</creatorcontrib><creatorcontrib>Graphodatsky, Alexander S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Proskuryakova, Anastasia A</au><au>Kulemzina, Anastasia I</au><au>Perelman, Polina L</au><au>Makunin, Alexey I</au><au>Larkin, Denis M</au><au>Farré, Marta</au><au>Kukekova, Anna V</au><au>Lynn Johnson, Jennifer</au><au>Lemskaya, Natalya A</au><au>Beklemisheva, Violetta R</au><au>Roelke-Parker, Melody E</au><au>Bellizzi, June</au><au>Ryder, Oliver A</au><au>O'Brien, Stephen J</au><au>Graphodatsky, Alexander S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X Chromosome Evolution in Cetartiodactyla</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2017-08-31</date><risdate>2017</risdate><volume>8</volume><issue>9</issue><spage>216</spage><pages>216-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>28858207</pmid><doi>10.3390/genes8090216</doi><orcidid>https://orcid.org/0000-0001-9170-5767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2017-08, Vol.8 (9), p.216
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5615350
source Publicly Available Content Database; PubMed Central
title X Chromosome Evolution in Cetartiodactyla
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X%20Chromosome%20Evolution%20in%20Cetartiodactyla&rft.jtitle=Genes&rft.au=Proskuryakova,%20Anastasia%20A&rft.date=2017-08-31&rft.volume=8&rft.issue=9&rft.spage=216&rft.pages=216-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes8090216&rft_dat=%3Cproquest_pubme%3E1934286842%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-579938283354ccd750a24a796d1dad227a856c8c4ae8ec4fb4c70403ec147a2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1934286842&rft_id=info:pmid/28858207&rfr_iscdi=true