Loading…

Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies

We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shar...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2017-12, Vol.73 (4), p.1210-1220
Main Authors: Sofer, Tamar, Schifano, Elizabeth D., Christiani, David C., Lin, Xihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843
cites cdi_FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843
container_end_page 1220
container_issue 4
container_start_page 1210
container_title Biometrics
container_volume 73
creator Sofer, Tamar
Schifano, Elizabeth D.
Christiani, David C.
Lin, Xihong
description We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Informationlike Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study.
doi_str_mv 10.1111/biom.12680
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5617769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44698349</jstor_id><sourcerecordid>44698349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhoModq1evCsBLyJMTSaZTOYirIvWQusWVtFbyCTfdLNmJuskY1n886Zuu6gHcwkhz_fw8r0IPaXkhObzunWhP6GlkOQemtGK04LwktxHM0KIKBinX4_Qoxg3-dlUpHyIjkrJuJAln6GfX8BdrRNYfBlhssG7b-DdOgSLuzDi1cdLHCHh-aD9LrqIr11a44vJJ7f1gFdgwmD1uMPLKZnQQ8RuwAsdoViEIY3B41MYIDmD5zEG43RyYcCrNFkH8TF60Gkf4cntfYw-v3_3afGhOF-eni3m54XhNSGFbUlHWCVICVC3Vct1zau2NJTIVoCglgqqS6JtV7NGtKySHa_BdhXldWclZ8fozd67ndoerIGcTHu1HV2fo6ugnfr7Z3BrdRV-qErQuhZNFry8FYzh-wQxqd5FA97rAcIUFZUyg4wymdEX_6CbMI15e5lqJJEVY2WdqVd7yowhxhG6QxhK1E2n6qZT9bvTDD__M_4BvSsxA3QPXDsPu_-o1Nuz5cWd9Nl-ZhNTGA8znIsmaxv2C60pt_o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980853327</pqid></control><display><type>article</type><title>Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies</title><source>Oxford Journals Online</source><source>JSTOR</source><source>SPORTDiscus with Full Text</source><creator>Sofer, Tamar ; Schifano, Elizabeth D. ; Christiani, David C. ; Lin, Xihong</creator><creatorcontrib>Sofer, Tamar ; Schifano, Elizabeth D. ; Christiani, David C. ; Lin, Xihong</creatorcontrib><description>We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Informationlike Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12680</identifier><identifier>PMID: 28346824</identifier><language>eng</language><publisher>United States: Wiley-Blackwell</publisher><subject>Bayesian analysis ; Biased sampling ; BIOMETRIC METHODOLOGY ; Case-Control Studies ; Computer Simulation ; Genetic Association Studies - statistics &amp; numerical data ; Genetics ; High‐dimensional data ; Humans ; Likelihood Functions ; Lung cancer ; Lung Neoplasms ; Mathematical models ; Parameter estimation ; Phenotype ; Polymorphism, Single Nucleotide ; Regression analysis ; Regression models ; Single-nucleotide polymorphism ; Smoking ; SNP set analysis ; Sparsity ; Statistical analysis ; Variable selection ; Variance component test ; Weighted BIC</subject><ispartof>Biometrics, 2017-12, Vol.73 (4), p.1210-1220</ispartof><rights>Copyright © 2017 International Biometric Society</rights><rights>2017, The International Biometric Society</rights><rights>2017, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843</citedby><cites>FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843</cites><orcidid>0000-0001-8520-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44698349$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44698349$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28346824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sofer, Tamar</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><creatorcontrib>Christiani, David C.</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><title>Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Informationlike Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study.</description><subject>Bayesian analysis</subject><subject>Biased sampling</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Case-Control Studies</subject><subject>Computer Simulation</subject><subject>Genetic Association Studies - statistics &amp; numerical data</subject><subject>Genetics</subject><subject>High‐dimensional data</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Lung cancer</subject><subject>Lung Neoplasms</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Single-nucleotide polymorphism</subject><subject>Smoking</subject><subject>SNP set analysis</subject><subject>Sparsity</subject><subject>Statistical analysis</subject><subject>Variable selection</subject><subject>Variance component test</subject><subject>Weighted BIC</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrFDEYhoModq1evCsBLyJMTSaZTOYirIvWQusWVtFbyCTfdLNmJuskY1n886Zuu6gHcwkhz_fw8r0IPaXkhObzunWhP6GlkOQemtGK04LwktxHM0KIKBinX4_Qoxg3-dlUpHyIjkrJuJAln6GfX8BdrRNYfBlhssG7b-DdOgSLuzDi1cdLHCHh-aD9LrqIr11a44vJJ7f1gFdgwmD1uMPLKZnQQ8RuwAsdoViEIY3B41MYIDmD5zEG43RyYcCrNFkH8TF60Gkf4cntfYw-v3_3afGhOF-eni3m54XhNSGFbUlHWCVICVC3Vct1zau2NJTIVoCglgqqS6JtV7NGtKySHa_BdhXldWclZ8fozd67ndoerIGcTHu1HV2fo6ugnfr7Z3BrdRV-qErQuhZNFry8FYzh-wQxqd5FA97rAcIUFZUyg4wymdEX_6CbMI15e5lqJJEVY2WdqVd7yowhxhG6QxhK1E2n6qZT9bvTDD__M_4BvSsxA3QPXDsPu_-o1Nuz5cWd9Nl-ZhNTGA8znIsmaxv2C60pt_o</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Sofer, Tamar</creator><creator>Schifano, Elizabeth D.</creator><creator>Christiani, David C.</creator><creator>Lin, Xihong</creator><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8520-8860</orcidid></search><sort><creationdate>201712</creationdate><title>Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies</title><author>Sofer, Tamar ; Schifano, Elizabeth D. ; Christiani, David C. ; Lin, Xihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Biased sampling</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Case-Control Studies</topic><topic>Computer Simulation</topic><topic>Genetic Association Studies - statistics &amp; numerical data</topic><topic>Genetics</topic><topic>High‐dimensional data</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Lung cancer</topic><topic>Lung Neoplasms</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Single-nucleotide polymorphism</topic><topic>Smoking</topic><topic>SNP set analysis</topic><topic>Sparsity</topic><topic>Statistical analysis</topic><topic>Variable selection</topic><topic>Variance component test</topic><topic>Weighted BIC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sofer, Tamar</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><creatorcontrib>Christiani, David C.</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sofer, Tamar</au><au>Schifano, Elizabeth D.</au><au>Christiani, David C.</au><au>Lin, Xihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2017-12</date><risdate>2017</risdate><volume>73</volume><issue>4</issue><spage>1210</spage><epage>1220</epage><pages>1210-1220</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Informationlike Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study.</abstract><cop>United States</cop><pub>Wiley-Blackwell</pub><pmid>28346824</pmid><doi>10.1111/biom.12680</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8520-8860</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2017-12, Vol.73 (4), p.1210-1220
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5617769
source Oxford Journals Online; JSTOR; SPORTDiscus with Full Text
subjects Bayesian analysis
Biased sampling
BIOMETRIC METHODOLOGY
Case-Control Studies
Computer Simulation
Genetic Association Studies - statistics & numerical data
Genetics
High‐dimensional data
Humans
Likelihood Functions
Lung cancer
Lung Neoplasms
Mathematical models
Parameter estimation
Phenotype
Polymorphism, Single Nucleotide
Regression analysis
Regression models
Single-nucleotide polymorphism
Smoking
SNP set analysis
Sparsity
Statistical analysis
Variable selection
Variance component test
Weighted BIC
title Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Pseudolikelihood%20for%20SNP%20set%20Analysis%20with%20Multiple%20Secondary%20Outcomes%20in%20Case-Control%20Genetic%20Association%20Studies&rft.jtitle=Biometrics&rft.au=Sofer,%20Tamar&rft.date=2017-12&rft.volume=73&rft.issue=4&rft.spage=1210&rft.epage=1220&rft.pages=1210-1220&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12680&rft_dat=%3Cjstor_pubme%3E44698349%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1980853327&rft_id=info:pmid/28346824&rft_jstor_id=44698349&rfr_iscdi=true