Loading…
Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies
We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shar...
Saved in:
Published in: | Biometrics 2017-12, Vol.73 (4), p.1210-1220 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843 |
---|---|
cites | cdi_FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843 |
container_end_page | 1220 |
container_issue | 4 |
container_start_page | 1210 |
container_title | Biometrics |
container_volume | 73 |
creator | Sofer, Tamar Schifano, Elizabeth D. Christiani, David C. Lin, Xihong |
description | We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Informationlike Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study. |
doi_str_mv | 10.1111/biom.12680 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5617769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44698349</jstor_id><sourcerecordid>44698349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhoModq1evCsBLyJMTSaZTOYirIvWQusWVtFbyCTfdLNmJuskY1n886Zuu6gHcwkhz_fw8r0IPaXkhObzunWhP6GlkOQemtGK04LwktxHM0KIKBinX4_Qoxg3-dlUpHyIjkrJuJAln6GfX8BdrRNYfBlhssG7b-DdOgSLuzDi1cdLHCHh-aD9LrqIr11a44vJJ7f1gFdgwmD1uMPLKZnQQ8RuwAsdoViEIY3B41MYIDmD5zEG43RyYcCrNFkH8TF60Gkf4cntfYw-v3_3afGhOF-eni3m54XhNSGFbUlHWCVICVC3Vct1zau2NJTIVoCglgqqS6JtV7NGtKySHa_BdhXldWclZ8fozd67ndoerIGcTHu1HV2fo6ugnfr7Z3BrdRV-qErQuhZNFry8FYzh-wQxqd5FA97rAcIUFZUyg4wymdEX_6CbMI15e5lqJJEVY2WdqVd7yowhxhG6QxhK1E2n6qZT9bvTDD__M_4BvSsxA3QPXDsPu_-o1Nuz5cWd9Nl-ZhNTGA8znIsmaxv2C60pt_o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980853327</pqid></control><display><type>article</type><title>Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies</title><source>Oxford Journals Online</source><source>JSTOR</source><source>SPORTDiscus with Full Text</source><creator>Sofer, Tamar ; Schifano, Elizabeth D. ; Christiani, David C. ; Lin, Xihong</creator><creatorcontrib>Sofer, Tamar ; Schifano, Elizabeth D. ; Christiani, David C. ; Lin, Xihong</creatorcontrib><description>We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Informationlike Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12680</identifier><identifier>PMID: 28346824</identifier><language>eng</language><publisher>United States: Wiley-Blackwell</publisher><subject>Bayesian analysis ; Biased sampling ; BIOMETRIC METHODOLOGY ; Case-Control Studies ; Computer Simulation ; Genetic Association Studies - statistics & numerical data ; Genetics ; High‐dimensional data ; Humans ; Likelihood Functions ; Lung cancer ; Lung Neoplasms ; Mathematical models ; Parameter estimation ; Phenotype ; Polymorphism, Single Nucleotide ; Regression analysis ; Regression models ; Single-nucleotide polymorphism ; Smoking ; SNP set analysis ; Sparsity ; Statistical analysis ; Variable selection ; Variance component test ; Weighted BIC</subject><ispartof>Biometrics, 2017-12, Vol.73 (4), p.1210-1220</ispartof><rights>Copyright © 2017 International Biometric Society</rights><rights>2017, The International Biometric Society</rights><rights>2017, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843</citedby><cites>FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843</cites><orcidid>0000-0001-8520-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44698349$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44698349$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28346824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sofer, Tamar</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><creatorcontrib>Christiani, David C.</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><title>Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Informationlike Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study.</description><subject>Bayesian analysis</subject><subject>Biased sampling</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Case-Control Studies</subject><subject>Computer Simulation</subject><subject>Genetic Association Studies - statistics & numerical data</subject><subject>Genetics</subject><subject>High‐dimensional data</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Lung cancer</subject><subject>Lung Neoplasms</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Single-nucleotide polymorphism</subject><subject>Smoking</subject><subject>SNP set analysis</subject><subject>Sparsity</subject><subject>Statistical analysis</subject><subject>Variable selection</subject><subject>Variance component test</subject><subject>Weighted BIC</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrFDEYhoModq1evCsBLyJMTSaZTOYirIvWQusWVtFbyCTfdLNmJuskY1n886Zuu6gHcwkhz_fw8r0IPaXkhObzunWhP6GlkOQemtGK04LwktxHM0KIKBinX4_Qoxg3-dlUpHyIjkrJuJAln6GfX8BdrRNYfBlhssG7b-DdOgSLuzDi1cdLHCHh-aD9LrqIr11a44vJJ7f1gFdgwmD1uMPLKZnQQ8RuwAsdoViEIY3B41MYIDmD5zEG43RyYcCrNFkH8TF60Gkf4cntfYw-v3_3afGhOF-eni3m54XhNSGFbUlHWCVICVC3Vct1zau2NJTIVoCglgqqS6JtV7NGtKySHa_BdhXldWclZ8fozd67ndoerIGcTHu1HV2fo6ugnfr7Z3BrdRV-qErQuhZNFry8FYzh-wQxqd5FA97rAcIUFZUyg4wymdEX_6CbMI15e5lqJJEVY2WdqVd7yowhxhG6QxhK1E2n6qZT9bvTDD__M_4BvSsxA3QPXDsPu_-o1Nuz5cWd9Nl-ZhNTGA8znIsmaxv2C60pt_o</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Sofer, Tamar</creator><creator>Schifano, Elizabeth D.</creator><creator>Christiani, David C.</creator><creator>Lin, Xihong</creator><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8520-8860</orcidid></search><sort><creationdate>201712</creationdate><title>Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies</title><author>Sofer, Tamar ; Schifano, Elizabeth D. ; Christiani, David C. ; Lin, Xihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Biased sampling</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Case-Control Studies</topic><topic>Computer Simulation</topic><topic>Genetic Association Studies - statistics & numerical data</topic><topic>Genetics</topic><topic>High‐dimensional data</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Lung cancer</topic><topic>Lung Neoplasms</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Single-nucleotide polymorphism</topic><topic>Smoking</topic><topic>SNP set analysis</topic><topic>Sparsity</topic><topic>Statistical analysis</topic><topic>Variable selection</topic><topic>Variance component test</topic><topic>Weighted BIC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sofer, Tamar</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><creatorcontrib>Christiani, David C.</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sofer, Tamar</au><au>Schifano, Elizabeth D.</au><au>Christiani, David C.</au><au>Lin, Xihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2017-12</date><risdate>2017</risdate><volume>73</volume><issue>4</issue><spage>1210</spage><epage>1220</epage><pages>1210-1220</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Informationlike Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study.</abstract><cop>United States</cop><pub>Wiley-Blackwell</pub><pmid>28346824</pmid><doi>10.1111/biom.12680</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8520-8860</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2017-12, Vol.73 (4), p.1210-1220 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5617769 |
source | Oxford Journals Online; JSTOR; SPORTDiscus with Full Text |
subjects | Bayesian analysis Biased sampling BIOMETRIC METHODOLOGY Case-Control Studies Computer Simulation Genetic Association Studies - statistics & numerical data Genetics High‐dimensional data Humans Likelihood Functions Lung cancer Lung Neoplasms Mathematical models Parameter estimation Phenotype Polymorphism, Single Nucleotide Regression analysis Regression models Single-nucleotide polymorphism Smoking SNP set analysis Sparsity Statistical analysis Variable selection Variance component test Weighted BIC |
title | Weighted Pseudolikelihood for SNP set Analysis with Multiple Secondary Outcomes in Case-Control Genetic Association Studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Pseudolikelihood%20for%20SNP%20set%20Analysis%20with%20Multiple%20Secondary%20Outcomes%20in%20Case-Control%20Genetic%20Association%20Studies&rft.jtitle=Biometrics&rft.au=Sofer,%20Tamar&rft.date=2017-12&rft.volume=73&rft.issue=4&rft.spage=1210&rft.epage=1220&rft.pages=1210-1220&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12680&rft_dat=%3Cjstor_pubme%3E44698349%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4700-db0f035602ee7b5b4a745b2c108b6e61d161a20adf7396b358f47edf5147fd843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1980853327&rft_id=info:pmid/28346824&rft_jstor_id=44698349&rfr_iscdi=true |