Loading…
Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes
Abstract We present a theoretical analysis of some unexplored aspects of relaxed Bose–Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale pre...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2017-11, Vol.471 (4), p.4559-4570 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-dfc584432fbfc42ef295b8598a5e1fcf39689ec6aa09a36ba8309579e498f8203 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-dfc584432fbfc42ef295b8598a5e1fcf39689ec6aa09a36ba8309579e498f8203 |
container_end_page | 4570 |
container_issue | 4 |
container_start_page | 4559 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 471 |
creator | Mocz, Philip Vogelsberger, Mark Robles, Victor H. Zavala, Jesús Boylan-Kolchin, Michael Fialkov, Anastasia Hernquist, Lars |
description | Abstract
We present a theoretical analysis of some unexplored aspects of relaxed Bose–Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger–Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r
−3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Ξ ≡ |E|/M
3/(Gm/ℏ)2 or M
c/M ≃ 2.6Ξ1/3, linking the soliton to global halo properties. For r ≥ 3.5 r
c core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k
−1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k
−5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes. |
doi_str_mv | 10.1093/mnras/stx1887 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5624554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stx1887</oup_id><sourcerecordid>1948754168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-dfc584432fbfc42ef295b8598a5e1fcf39689ec6aa09a36ba8309579e498f8203</originalsourceid><addsrcrecordid>eNqFkctO5DAQRS00CJrHki3ycjYBO47d9makoXlKIFjA2qokZTooiXvshNeKf-AP-RIC3TCwYlVS1albV3UJ2eJshzMjdps2QNyN3T3XerxERlwomaRGqV9kxJiQiR5zvkrWYrxhjGUiVStkNdVGC56aEbk4ghruH6jzoYGu8i29q7op3TuY7J_Rl6dnerJDL_uQ9zW2BVJoSxpw2Jiz3tGqRKirRyzpFGqPcYMsO6gjbi7qOrk6PLicHCen50cnk7-nSZGlrEtKV0idDXZc7oYOutTIXEujQSJ3hRNGaYOFAmAGhMpBC2bk2GBmtNMpE-vkz1x31ucNlgW2XYDazkLVQHiwHir7fdJWU3vtb61UaSZlNgj8XggE_6_H2NmmigXWNbTo-2i5yfRYZlzpAU3maBF8jAHd5xnO7FsK9j0Fu0hh4Le_evukP97-_7bvZz9ovQI3DZSP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948754168</pqid></control><display><type>article</type><title>Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes</title><source>Oxford Open</source><creator>Mocz, Philip ; Vogelsberger, Mark ; Robles, Victor H. ; Zavala, Jesús ; Boylan-Kolchin, Michael ; Fialkov, Anastasia ; Hernquist, Lars</creator><creatorcontrib>Mocz, Philip ; Vogelsberger, Mark ; Robles, Victor H. ; Zavala, Jesús ; Boylan-Kolchin, Michael ; Fialkov, Anastasia ; Hernquist, Lars</creatorcontrib><description>Abstract
We present a theoretical analysis of some unexplored aspects of relaxed Bose–Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger–Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r
−3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Ξ ≡ |E|/M
3/(Gm/ℏ)2 or M
c/M ≃ 2.6Ξ1/3, linking the soliton to global halo properties. For r ≥ 3.5 r
c core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k
−1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k
−5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stx1887</identifier><identifier>PMID: 28983129</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2017-11, Vol.471 (4), p.4559-4570</ispartof><rights>2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-dfc584432fbfc42ef295b8598a5e1fcf39689ec6aa09a36ba8309579e498f8203</citedby><cites>FETCH-LOGICAL-c420t-dfc584432fbfc42ef295b8598a5e1fcf39689ec6aa09a36ba8309579e498f8203</cites><orcidid>0000-0001-6631-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stx1887$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28983129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mocz, Philip</creatorcontrib><creatorcontrib>Vogelsberger, Mark</creatorcontrib><creatorcontrib>Robles, Victor H.</creatorcontrib><creatorcontrib>Zavala, Jesús</creatorcontrib><creatorcontrib>Boylan-Kolchin, Michael</creatorcontrib><creatorcontrib>Fialkov, Anastasia</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><title>Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon Not R Astron Soc</addtitle><description>Abstract
We present a theoretical analysis of some unexplored aspects of relaxed Bose–Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger–Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r
−3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Ξ ≡ |E|/M
3/(Gm/ℏ)2 or M
c/M ≃ 2.6Ξ1/3, linking the soliton to global halo properties. For r ≥ 3.5 r
c core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k
−1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k
−5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkctO5DAQRS00CJrHki3ycjYBO47d9makoXlKIFjA2qokZTooiXvshNeKf-AP-RIC3TCwYlVS1albV3UJ2eJshzMjdps2QNyN3T3XerxERlwomaRGqV9kxJiQiR5zvkrWYrxhjGUiVStkNdVGC56aEbk4ghruH6jzoYGu8i29q7op3TuY7J_Rl6dnerJDL_uQ9zW2BVJoSxpw2Jiz3tGqRKirRyzpFGqPcYMsO6gjbi7qOrk6PLicHCen50cnk7-nSZGlrEtKV0idDXZc7oYOutTIXEujQSJ3hRNGaYOFAmAGhMpBC2bk2GBmtNMpE-vkz1x31ucNlgW2XYDazkLVQHiwHir7fdJWU3vtb61UaSZlNgj8XggE_6_H2NmmigXWNbTo-2i5yfRYZlzpAU3maBF8jAHd5xnO7FsK9j0Fu0hh4Le_evukP97-_7bvZz9ovQI3DZSP</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Mocz, Philip</creator><creator>Vogelsberger, Mark</creator><creator>Robles, Victor H.</creator><creator>Zavala, Jesús</creator><creator>Boylan-Kolchin, Michael</creator><creator>Fialkov, Anastasia</creator><creator>Hernquist, Lars</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6631-2566</orcidid></search><sort><creationdate>20171101</creationdate><title>Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes</title><author>Mocz, Philip ; Vogelsberger, Mark ; Robles, Victor H. ; Zavala, Jesús ; Boylan-Kolchin, Michael ; Fialkov, Anastasia ; Hernquist, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-dfc584432fbfc42ef295b8598a5e1fcf39689ec6aa09a36ba8309579e498f8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mocz, Philip</creatorcontrib><creatorcontrib>Vogelsberger, Mark</creatorcontrib><creatorcontrib>Robles, Victor H.</creatorcontrib><creatorcontrib>Zavala, Jesús</creatorcontrib><creatorcontrib>Boylan-Kolchin, Michael</creatorcontrib><creatorcontrib>Fialkov, Anastasia</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mocz, Philip</au><au>Vogelsberger, Mark</au><au>Robles, Victor H.</au><au>Zavala, Jesús</au><au>Boylan-Kolchin, Michael</au><au>Fialkov, Anastasia</au><au>Hernquist, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><addtitle>Mon Not R Astron Soc</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>471</volume><issue>4</issue><spage>4559</spage><epage>4570</epage><pages>4559-4570</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract
We present a theoretical analysis of some unexplored aspects of relaxed Bose–Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger–Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r
−3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Ξ ≡ |E|/M
3/(Gm/ℏ)2 or M
c/M ≃ 2.6Ξ1/3, linking the soliton to global halo properties. For r ≥ 3.5 r
c core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k
−1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k
−5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28983129</pmid><doi>10.1093/mnras/stx1887</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6631-2566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2017-11, Vol.471 (4), p.4559-4570 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5624554 |
source | Oxford Open |
title | Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galaxy%20formation%20with%20BECDM%20%E2%80%93%20I.%20Turbulence%20and%20relaxation%20of%20idealized%20haloes&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Mocz,%20Philip&rft.date=2017-11-01&rft.volume=471&rft.issue=4&rft.spage=4559&rft.epage=4570&rft.pages=4559-4570&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stx1887&rft_dat=%3Cproquest_TOX%3E1948754168%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-dfc584432fbfc42ef295b8598a5e1fcf39689ec6aa09a36ba8309579e498f8203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1948754168&rft_id=info:pmid/28983129&rft_oup_id=10.1093/mnras/stx1887&rfr_iscdi=true |