Loading…

Synthesis of 3‑O‑Sulfated Oligosaccharides to Understand the Relationship between Structures and Functions of Heparan Sulfate

The sulfation at the 3-OH position of glucosamine is an important modification in forming structural domains for heparan sulfate to enable its biological functions. Seven 3-O-sulfotransferase isoforms in the human genome are involved in the biosynthesis of 3-O-sulfated heparan sulfate. As a rare mod...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2017-04, Vol.139 (14), p.5249-5256
Main Authors: Wang, Zhangjie, Hsieh, Po-Hung, Xu, Yongmei, Thieker, David, Chai, Evangeline Juan En, Xie, Shaoshuai, Cooley, Brian, Woods, Robert J, Chi, Lianli, Liu, Jian
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sulfation at the 3-OH position of glucosamine is an important modification in forming structural domains for heparan sulfate to enable its biological functions. Seven 3-O-sulfotransferase isoforms in the human genome are involved in the biosynthesis of 3-O-sulfated heparan sulfate. As a rare modification present in heparan sulfate, the availability of 3-O-sulfated oligosaccharides is very limited. Here, we report the use of a chemoenzymatic synthetic approach to synthesize six 3-O-sulfated oligosaccharides, including three hexasaccharides and three octasaccharides. The synthesis was achieved by rearranging the enzymatic modification sequence to accommodate the substrate specificity of 3-O-sulfotransferase 3. We studied the impact of 3-O-sulfation on the conformation of the pyranose ring of 2-O-sulfated iduronic acid using NMR, and on the correlation between ring conformation and anticoagulant activity. We identified a novel octasaccharide that interacts with antithrombin and displays anti factor Xa activity. Interestingly, the octasaccharide displays a faster clearance rate than fondaparinux, an FDA-approved pentasaccharide drug, in a rat model, making this octasaccharide a potential short-acting anticoagulant drug candidate that could reduce bleeding risk. Having access to a set of critically important 3-O-sulfated oligosaccharides offers the potential to develop new heparan sulfate-based therapeutics.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b01923