Loading…
Synthesis of 3‑O‑Sulfated Oligosaccharides to Understand the Relationship between Structures and Functions of Heparan Sulfate
The sulfation at the 3-OH position of glucosamine is an important modification in forming structural domains for heparan sulfate to enable its biological functions. Seven 3-O-sulfotransferase isoforms in the human genome are involved in the biosynthesis of 3-O-sulfated heparan sulfate. As a rare mod...
Saved in:
Published in: | Journal of the American Chemical Society 2017-04, Vol.139 (14), p.5249-5256 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The sulfation at the 3-OH position of glucosamine is an important modification in forming structural domains for heparan sulfate to enable its biological functions. Seven 3-O-sulfotransferase isoforms in the human genome are involved in the biosynthesis of 3-O-sulfated heparan sulfate. As a rare modification present in heparan sulfate, the availability of 3-O-sulfated oligosaccharides is very limited. Here, we report the use of a chemoenzymatic synthetic approach to synthesize six 3-O-sulfated oligosaccharides, including three hexasaccharides and three octasaccharides. The synthesis was achieved by rearranging the enzymatic modification sequence to accommodate the substrate specificity of 3-O-sulfotransferase 3. We studied the impact of 3-O-sulfation on the conformation of the pyranose ring of 2-O-sulfated iduronic acid using NMR, and on the correlation between ring conformation and anticoagulant activity. We identified a novel octasaccharide that interacts with antithrombin and displays anti factor Xa activity. Interestingly, the octasaccharide displays a faster clearance rate than fondaparinux, an FDA-approved pentasaccharide drug, in a rat model, making this octasaccharide a potential short-acting anticoagulant drug candidate that could reduce bleeding risk. Having access to a set of critically important 3-O-sulfated oligosaccharides offers the potential to develop new heparan sulfate-based therapeutics. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b01923 |