Loading…
Geometry Optimization with Machine Trained Topological Atoms
The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies f...
Saved in:
Published in: | Scientific reports 2017-10, Vol.7 (1), p.12817-18, Article 12817 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 12817 |
container_title | Scientific reports |
container_volume | 7 |
creator | Zielinski, François Maxwell, Peter I. Fletcher, Timothy L. Davie, Stuart J. Di Pasquale, Nicodemo Cardamone, Salvatore Mills, Matthew J. L. Popelier, Paul L. A. |
description | The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol
−1
of the corresponding
ab initio
energy, and 50% of those to within 0.05 kJ mol
−1
. Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms
E
intra
A
(intra-atomic),
V
cl
AA
'
(electrostatic) and
V
x
AA
'
(exchange), in contrast to standard force fields. |
doi_str_mv | 10.1038/s41598-017-12600-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5634454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949695305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoMotqz9A17IoDfejJ58zSQgQilahUpv1uuQyZ7ZTZlJ1iSr1F9v6tSyCubmBM5z3vPxEvKcwhsKXL3NgkqtWqB9S1kH0PJH5JSBkC3jjD0--p-Qs5xvoD7JtKD6KTlhSmve9eKUvLvEOGNJt831vvjZ_7TFx9D88GXXfLFu5wM262Rr2DTruI9T3Hpnp-a8xDk_I09GO2U8u48r8vXjh_XFp_bq-vLzxflV6yTQ0rIepNtoygD6QUnKhAbXDYOgqJnmqGkHvRoZF32nHIeeooJxo9XIAZEOfEXeL7r7wzDjxmEoyU5mn_xs062J1pu_M8HvzDZ-N7LjQkhRBV4uAjEXb7LzBd3OxRDQFUM7JrjgFXp93yXFbwfMxcw-O5wmGzAesqFa6E5LDrKir_5Bb-IhhXqDSsleSabqYivCFsqlmHPC8WFiCubORLOYaKqJ5reJ5m6KF8e7PpT8sawCfAFyTYUtpqPe_5f9BTYtpVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957852829</pqid></control><display><type>article</type><title>Geometry Optimization with Machine Trained Topological Atoms</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zielinski, François ; Maxwell, Peter I. ; Fletcher, Timothy L. ; Davie, Stuart J. ; Di Pasquale, Nicodemo ; Cardamone, Salvatore ; Mills, Matthew J. L. ; Popelier, Paul L. A.</creator><creatorcontrib>Zielinski, François ; Maxwell, Peter I. ; Fletcher, Timothy L. ; Davie, Stuart J. ; Di Pasquale, Nicodemo ; Cardamone, Salvatore ; Mills, Matthew J. L. ; Popelier, Paul L. A. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol
−1
of the corresponding
ab initio
energy, and 50% of those to within 0.05 kJ mol
−1
. Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms
E
intra
A
(intra-atomic),
V
cl
AA
'
(electrostatic) and
V
x
AA
'
(exchange), in contrast to standard force fields.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-12600-3</identifier><identifier>PMID: 28993674</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/638/563/606 ; 639/638/563/758 ; Energy ; Geometry ; Humanities and Social Sciences ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Learning algorithms ; multidisciplinary ; Potential energy ; Science ; Science & Technology - Other Topics ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2017-10, Vol.7 (1), p.12817-18, Article 12817</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3</citedby><cites>FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3</cites><orcidid>0000-0002-7208-7542 ; 0000-0001-9053-1363 ; 0000000190531363 ; 0000000272087542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957852829/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957852829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28993674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1624343$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zielinski, François</creatorcontrib><creatorcontrib>Maxwell, Peter I.</creatorcontrib><creatorcontrib>Fletcher, Timothy L.</creatorcontrib><creatorcontrib>Davie, Stuart J.</creatorcontrib><creatorcontrib>Di Pasquale, Nicodemo</creatorcontrib><creatorcontrib>Cardamone, Salvatore</creatorcontrib><creatorcontrib>Mills, Matthew J. L.</creatorcontrib><creatorcontrib>Popelier, Paul L. A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Geometry Optimization with Machine Trained Topological Atoms</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol
−1
of the corresponding
ab initio
energy, and 50% of those to within 0.05 kJ mol
−1
. Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms
E
intra
A
(intra-atomic),
V
cl
AA
'
(electrostatic) and
V
x
AA
'
(exchange), in contrast to standard force fields.</description><subject>119/118</subject><subject>639/638/563/606</subject><subject>639/638/563/758</subject><subject>Energy</subject><subject>Geometry</subject><subject>Humanities and Social Sciences</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Learning algorithms</subject><subject>multidisciplinary</subject><subject>Potential energy</subject><subject>Science</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kV1rFDEUhoMotqz9A17IoDfejJ58zSQgQilahUpv1uuQyZ7ZTZlJ1iSr1F9v6tSyCubmBM5z3vPxEvKcwhsKXL3NgkqtWqB9S1kH0PJH5JSBkC3jjD0--p-Qs5xvoD7JtKD6KTlhSmve9eKUvLvEOGNJt831vvjZ_7TFx9D88GXXfLFu5wM262Rr2DTruI9T3Hpnp-a8xDk_I09GO2U8u48r8vXjh_XFp_bq-vLzxflV6yTQ0rIepNtoygD6QUnKhAbXDYOgqJnmqGkHvRoZF32nHIeeooJxo9XIAZEOfEXeL7r7wzDjxmEoyU5mn_xs062J1pu_M8HvzDZ-N7LjQkhRBV4uAjEXb7LzBd3OxRDQFUM7JrjgFXp93yXFbwfMxcw-O5wmGzAesqFa6E5LDrKir_5Bb-IhhXqDSsleSabqYivCFsqlmHPC8WFiCubORLOYaKqJ5reJ5m6KF8e7PpT8sawCfAFyTYUtpqPe_5f9BTYtpVk</recordid><startdate>20171009</startdate><enddate>20171009</enddate><creator>Zielinski, François</creator><creator>Maxwell, Peter I.</creator><creator>Fletcher, Timothy L.</creator><creator>Davie, Stuart J.</creator><creator>Di Pasquale, Nicodemo</creator><creator>Cardamone, Salvatore</creator><creator>Mills, Matthew J. L.</creator><creator>Popelier, Paul L. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7208-7542</orcidid><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><orcidid>https://orcid.org/0000000190531363</orcidid><orcidid>https://orcid.org/0000000272087542</orcidid></search><sort><creationdate>20171009</creationdate><title>Geometry Optimization with Machine Trained Topological Atoms</title><author>Zielinski, François ; Maxwell, Peter I. ; Fletcher, Timothy L. ; Davie, Stuart J. ; Di Pasquale, Nicodemo ; Cardamone, Salvatore ; Mills, Matthew J. L. ; Popelier, Paul L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>119/118</topic><topic>639/638/563/606</topic><topic>639/638/563/758</topic><topic>Energy</topic><topic>Geometry</topic><topic>Humanities and Social Sciences</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Learning algorithms</topic><topic>multidisciplinary</topic><topic>Potential energy</topic><topic>Science</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zielinski, François</creatorcontrib><creatorcontrib>Maxwell, Peter I.</creatorcontrib><creatorcontrib>Fletcher, Timothy L.</creatorcontrib><creatorcontrib>Davie, Stuart J.</creatorcontrib><creatorcontrib>Di Pasquale, Nicodemo</creatorcontrib><creatorcontrib>Cardamone, Salvatore</creatorcontrib><creatorcontrib>Mills, Matthew J. L.</creatorcontrib><creatorcontrib>Popelier, Paul L. A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zielinski, François</au><au>Maxwell, Peter I.</au><au>Fletcher, Timothy L.</au><au>Davie, Stuart J.</au><au>Di Pasquale, Nicodemo</au><au>Cardamone, Salvatore</au><au>Mills, Matthew J. L.</au><au>Popelier, Paul L. A.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry Optimization with Machine Trained Topological Atoms</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-10-09</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>12817</spage><epage>18</epage><pages>12817-18</pages><artnum>12817</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol
−1
of the corresponding
ab initio
energy, and 50% of those to within 0.05 kJ mol
−1
. Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms
E
intra
A
(intra-atomic),
V
cl
AA
'
(electrostatic) and
V
x
AA
'
(exchange), in contrast to standard force fields.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28993674</pmid><doi>10.1038/s41598-017-12600-3</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7208-7542</orcidid><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><orcidid>https://orcid.org/0000000190531363</orcidid><orcidid>https://orcid.org/0000000272087542</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-10, Vol.7 (1), p.12817-18, Article 12817 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5634454 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 639/638/563/606 639/638/563/758 Energy Geometry Humanities and Social Sciences INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Learning algorithms multidisciplinary Potential energy Science Science & Technology - Other Topics Science (multidisciplinary) |
title | Geometry Optimization with Machine Trained Topological Atoms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20Optimization%20with%20Machine%20Trained%20Topological%20Atoms&rft.jtitle=Scientific%20reports&rft.au=Zielinski,%20Fran%C3%A7ois&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2017-10-09&rft.volume=7&rft.issue=1&rft.spage=12817&rft.epage=18&rft.pages=12817-18&rft.artnum=12817&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-12600-3&rft_dat=%3Cproquest_pubme%3E1949695305%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957852829&rft_id=info:pmid/28993674&rfr_iscdi=true |