Loading…

Geometry Optimization with Machine Trained Topological Atoms

The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies f...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-10, Vol.7 (1), p.12817-18, Article 12817
Main Authors: Zielinski, François, Maxwell, Peter I., Fletcher, Timothy L., Davie, Stuart J., Di Pasquale, Nicodemo, Cardamone, Salvatore, Mills, Matthew J. L., Popelier, Paul L. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3
cites cdi_FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3
container_end_page 18
container_issue 1
container_start_page 12817
container_title Scientific reports
container_volume 7
creator Zielinski, François
Maxwell, Peter I.
Fletcher, Timothy L.
Davie, Stuart J.
Di Pasquale, Nicodemo
Cardamone, Salvatore
Mills, Matthew J. L.
Popelier, Paul L. A.
description The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol −1 of the corresponding ab initio energy, and 50% of those to within 0.05 kJ mol −1 . Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms E intra A (intra-atomic), V cl AA ' (electrostatic) and V x AA ' (exchange), in contrast to standard force fields.
doi_str_mv 10.1038/s41598-017-12600-3
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5634454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949695305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoMotqz9A17IoDfejJ58zSQgQilahUpv1uuQyZ7ZTZlJ1iSr1F9v6tSyCubmBM5z3vPxEvKcwhsKXL3NgkqtWqB9S1kH0PJH5JSBkC3jjD0--p-Qs5xvoD7JtKD6KTlhSmve9eKUvLvEOGNJt831vvjZ_7TFx9D88GXXfLFu5wM262Rr2DTruI9T3Hpnp-a8xDk_I09GO2U8u48r8vXjh_XFp_bq-vLzxflV6yTQ0rIepNtoygD6QUnKhAbXDYOgqJnmqGkHvRoZF32nHIeeooJxo9XIAZEOfEXeL7r7wzDjxmEoyU5mn_xs062J1pu_M8HvzDZ-N7LjQkhRBV4uAjEXb7LzBd3OxRDQFUM7JrjgFXp93yXFbwfMxcw-O5wmGzAesqFa6E5LDrKir_5Bb-IhhXqDSsleSabqYivCFsqlmHPC8WFiCubORLOYaKqJ5reJ5m6KF8e7PpT8sawCfAFyTYUtpqPe_5f9BTYtpVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957852829</pqid></control><display><type>article</type><title>Geometry Optimization with Machine Trained Topological Atoms</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zielinski, François ; Maxwell, Peter I. ; Fletcher, Timothy L. ; Davie, Stuart J. ; Di Pasquale, Nicodemo ; Cardamone, Salvatore ; Mills, Matthew J. L. ; Popelier, Paul L. A.</creator><creatorcontrib>Zielinski, François ; Maxwell, Peter I. ; Fletcher, Timothy L. ; Davie, Stuart J. ; Di Pasquale, Nicodemo ; Cardamone, Salvatore ; Mills, Matthew J. L. ; Popelier, Paul L. A. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol −1 of the corresponding ab initio energy, and 50% of those to within 0.05 kJ mol −1 . Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms E intra A (intra-atomic), V cl AA ' (electrostatic) and V x AA ' (exchange), in contrast to standard force fields.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-12600-3</identifier><identifier>PMID: 28993674</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/638/563/606 ; 639/638/563/758 ; Energy ; Geometry ; Humanities and Social Sciences ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Learning algorithms ; multidisciplinary ; Potential energy ; Science ; Science &amp; Technology - Other Topics ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2017-10, Vol.7 (1), p.12817-18, Article 12817</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3</citedby><cites>FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3</cites><orcidid>0000-0002-7208-7542 ; 0000-0001-9053-1363 ; 0000000190531363 ; 0000000272087542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957852829/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957852829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28993674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1624343$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zielinski, François</creatorcontrib><creatorcontrib>Maxwell, Peter I.</creatorcontrib><creatorcontrib>Fletcher, Timothy L.</creatorcontrib><creatorcontrib>Davie, Stuart J.</creatorcontrib><creatorcontrib>Di Pasquale, Nicodemo</creatorcontrib><creatorcontrib>Cardamone, Salvatore</creatorcontrib><creatorcontrib>Mills, Matthew J. L.</creatorcontrib><creatorcontrib>Popelier, Paul L. A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Geometry Optimization with Machine Trained Topological Atoms</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol −1 of the corresponding ab initio energy, and 50% of those to within 0.05 kJ mol −1 . Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms E intra A (intra-atomic), V cl AA ' (electrostatic) and V x AA ' (exchange), in contrast to standard force fields.</description><subject>119/118</subject><subject>639/638/563/606</subject><subject>639/638/563/758</subject><subject>Energy</subject><subject>Geometry</subject><subject>Humanities and Social Sciences</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Learning algorithms</subject><subject>multidisciplinary</subject><subject>Potential energy</subject><subject>Science</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kV1rFDEUhoMotqz9A17IoDfejJ58zSQgQilahUpv1uuQyZ7ZTZlJ1iSr1F9v6tSyCubmBM5z3vPxEvKcwhsKXL3NgkqtWqB9S1kH0PJH5JSBkC3jjD0--p-Qs5xvoD7JtKD6KTlhSmve9eKUvLvEOGNJt831vvjZ_7TFx9D88GXXfLFu5wM262Rr2DTruI9T3Hpnp-a8xDk_I09GO2U8u48r8vXjh_XFp_bq-vLzxflV6yTQ0rIepNtoygD6QUnKhAbXDYOgqJnmqGkHvRoZF32nHIeeooJxo9XIAZEOfEXeL7r7wzDjxmEoyU5mn_xs062J1pu_M8HvzDZ-N7LjQkhRBV4uAjEXb7LzBd3OxRDQFUM7JrjgFXp93yXFbwfMxcw-O5wmGzAesqFa6E5LDrKir_5Bb-IhhXqDSsleSabqYivCFsqlmHPC8WFiCubORLOYaKqJ5reJ5m6KF8e7PpT8sawCfAFyTYUtpqPe_5f9BTYtpVk</recordid><startdate>20171009</startdate><enddate>20171009</enddate><creator>Zielinski, François</creator><creator>Maxwell, Peter I.</creator><creator>Fletcher, Timothy L.</creator><creator>Davie, Stuart J.</creator><creator>Di Pasquale, Nicodemo</creator><creator>Cardamone, Salvatore</creator><creator>Mills, Matthew J. L.</creator><creator>Popelier, Paul L. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7208-7542</orcidid><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><orcidid>https://orcid.org/0000000190531363</orcidid><orcidid>https://orcid.org/0000000272087542</orcidid></search><sort><creationdate>20171009</creationdate><title>Geometry Optimization with Machine Trained Topological Atoms</title><author>Zielinski, François ; Maxwell, Peter I. ; Fletcher, Timothy L. ; Davie, Stuart J. ; Di Pasquale, Nicodemo ; Cardamone, Salvatore ; Mills, Matthew J. L. ; Popelier, Paul L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>119/118</topic><topic>639/638/563/606</topic><topic>639/638/563/758</topic><topic>Energy</topic><topic>Geometry</topic><topic>Humanities and Social Sciences</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Learning algorithms</topic><topic>multidisciplinary</topic><topic>Potential energy</topic><topic>Science</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zielinski, François</creatorcontrib><creatorcontrib>Maxwell, Peter I.</creatorcontrib><creatorcontrib>Fletcher, Timothy L.</creatorcontrib><creatorcontrib>Davie, Stuart J.</creatorcontrib><creatorcontrib>Di Pasquale, Nicodemo</creatorcontrib><creatorcontrib>Cardamone, Salvatore</creatorcontrib><creatorcontrib>Mills, Matthew J. L.</creatorcontrib><creatorcontrib>Popelier, Paul L. A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zielinski, François</au><au>Maxwell, Peter I.</au><au>Fletcher, Timothy L.</au><au>Davie, Stuart J.</au><au>Di Pasquale, Nicodemo</au><au>Cardamone, Salvatore</au><au>Mills, Matthew J. L.</au><au>Popelier, Paul L. A.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry Optimization with Machine Trained Topological Atoms</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-10-09</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>12817</spage><epage>18</epage><pages>12817-18</pages><artnum>12817</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol −1 of the corresponding ab initio energy, and 50% of those to within 0.05 kJ mol −1 . Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms E intra A (intra-atomic), V cl AA ' (electrostatic) and V x AA ' (exchange), in contrast to standard force fields.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28993674</pmid><doi>10.1038/s41598-017-12600-3</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7208-7542</orcidid><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><orcidid>https://orcid.org/0000000190531363</orcidid><orcidid>https://orcid.org/0000000272087542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-10, Vol.7 (1), p.12817-18, Article 12817
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5634454
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
639/638/563/606
639/638/563/758
Energy
Geometry
Humanities and Social Sciences
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Learning algorithms
multidisciplinary
Potential energy
Science
Science & Technology - Other Topics
Science (multidisciplinary)
title Geometry Optimization with Machine Trained Topological Atoms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20Optimization%20with%20Machine%20Trained%20Topological%20Atoms&rft.jtitle=Scientific%20reports&rft.au=Zielinski,%20Fran%C3%A7ois&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2017-10-09&rft.volume=7&rft.issue=1&rft.spage=12817&rft.epage=18&rft.pages=12817-18&rft.artnum=12817&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-12600-3&rft_dat=%3Cproquest_pubme%3E1949695305%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-2705cd912007b8512490c6bb41e9293e916078f234768c3071e80fd98f30ee1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957852829&rft_id=info:pmid/28993674&rfr_iscdi=true