Loading…
An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions
We present an exact method to model the free vibration of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) beams with arbitrary boundary conditions based on first-order shear deformation elasticity theory. Five types of carbon nanotube (CNT) distributions are considered. The distr...
Saved in:
Published in: | Scientific reports 2017-10, Vol.7 (1), p.12909-18, Article 12909 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-3a252e0a0b01fdd17a79173191b75adffa69847d8ae986d42e35588af8fbf11c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-3a252e0a0b01fdd17a79173191b75adffa69847d8ae986d42e35588af8fbf11c3 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 12909 |
container_title | Scientific reports |
container_volume | 7 |
creator | Shi, Zeyu Yao, Xiongliang Pang, Fuzhen Wang, Qingshan |
description | We present an exact method to model the free vibration of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) beams with arbitrary boundary conditions based on first-order shear deformation elasticity theory. Five types of carbon nanotube (CNT) distributions are considered. The distributions are either uniform or functionally graded and are assumed to be continuous through the thickness of the beams. The displacements and rotational components of the beams are expressed as a linear combination of the standard Fourier series and several supplementary functions. The formulation is derived using the modified Fourier series and solved using the strong-form solution and the weak-form solution (i.e., the Rayleigh–Ritz method). Both solutions are applicable to various combinations of boundary constraints, including classical boundary conditions and elastic-supported boundary conditions. The accuracy, efficiency and validity of the two solutions presented are demonstrated via comparison with published results. A parametric study is conducted on the influence of several key parameters, namely, the L/h ratio, CNT volume fraction, CNT distribution, boundary spring stiffness and shear correction factor, on the free vibration of FG-CNTRC beams. |
doi_str_mv | 10.1038/s41598-017-12596-w |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950181784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-3a252e0a0b01fdd17a79173191b75adffa69847d8ae986d42e35588af8fbf11c3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEolXpC3BAlrhwMXiceGNfkKqKf1IlLnC2HHu86yprL3bS7b4Iz4vTLaVwwBePZn7zeTxf07wE9hZYK9-VDoSSlEFPgQu1ovsnzSlnnaC85fzpo_ikOS_lmtUjuOpAPW9OuGIgOcBp8_MiErw1diIljfMUUiQ-ZTJtkPiMSG_CkM1d2kQzHkooJHni52iXpBnHA1ln49ARa_KQIo0mpmkekGYMsUrZpZS2u1TChGRAsy1kH6YNqXiYsskHMqQ5uiWwKbqw6JYXzTNvxoLn9_dZ8_3jh2-Xn-nV109fLi-uqO36bqKt4YIjM2xg4J2D3vQK-hYUDL0wznuzUrLrnTSo5Mp1HFshpDRe-sED2PaseX_U3c3DFp3FWEca9S6HbR1IJxP035UYNnqdbrRYtQLargq8uRfI6ceMZdLbUCyOo4mY5qJBibpq6OWCvv4HvU5zrjssulrRCyY7xSrFj5TNqZSM_mEYYHpxXh-d19V5fee83temV4-_8dDy2-cKtEeg1FJcY_7z9n9kfwHX3b7i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117508490</pqid></control><display><type>article</type><title>An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions</title><source>PubMed (Medline)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shi, Zeyu ; Yao, Xiongliang ; Pang, Fuzhen ; Wang, Qingshan</creator><creatorcontrib>Shi, Zeyu ; Yao, Xiongliang ; Pang, Fuzhen ; Wang, Qingshan</creatorcontrib><description>We present an exact method to model the free vibration of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) beams with arbitrary boundary conditions based on first-order shear deformation elasticity theory. Five types of carbon nanotube (CNT) distributions are considered. The distributions are either uniform or functionally graded and are assumed to be continuous through the thickness of the beams. The displacements and rotational components of the beams are expressed as a linear combination of the standard Fourier series and several supplementary functions. The formulation is derived using the modified Fourier series and solved using the strong-form solution and the weak-form solution (i.e., the Rayleigh–Ritz method). Both solutions are applicable to various combinations of boundary constraints, including classical boundary conditions and elastic-supported boundary conditions. The accuracy, efficiency and validity of the two solutions presented are demonstrated via comparison with published results. A parametric study is conducted on the influence of several key parameters, namely, the L/h ratio, CNT volume fraction, CNT distribution, boundary spring stiffness and shear correction factor, on the free vibration of FG-CNTRC beams.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-12596-w</identifier><identifier>PMID: 29018211</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/73 ; 639/705/1041 ; Boundary conditions ; Boundary springs ; Carbon ; Humanities and Social Sciences ; multidisciplinary ; Nanotubes ; Science ; Science (multidisciplinary) ; Vibration</subject><ispartof>Scientific reports, 2017-10, Vol.7 (1), p.12909-18, Article 12909</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-3a252e0a0b01fdd17a79173191b75adffa69847d8ae986d42e35588af8fbf11c3</citedby><cites>FETCH-LOGICAL-c474t-3a252e0a0b01fdd17a79173191b75adffa69847d8ae986d42e35588af8fbf11c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2117508490/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2117508490?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29018211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Zeyu</creatorcontrib><creatorcontrib>Yao, Xiongliang</creatorcontrib><creatorcontrib>Pang, Fuzhen</creatorcontrib><creatorcontrib>Wang, Qingshan</creatorcontrib><title>An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We present an exact method to model the free vibration of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) beams with arbitrary boundary conditions based on first-order shear deformation elasticity theory. Five types of carbon nanotube (CNT) distributions are considered. The distributions are either uniform or functionally graded and are assumed to be continuous through the thickness of the beams. The displacements and rotational components of the beams are expressed as a linear combination of the standard Fourier series and several supplementary functions. The formulation is derived using the modified Fourier series and solved using the strong-form solution and the weak-form solution (i.e., the Rayleigh–Ritz method). Both solutions are applicable to various combinations of boundary constraints, including classical boundary conditions and elastic-supported boundary conditions. The accuracy, efficiency and validity of the two solutions presented are demonstrated via comparison with published results. A parametric study is conducted on the influence of several key parameters, namely, the L/h ratio, CNT volume fraction, CNT distribution, boundary spring stiffness and shear correction factor, on the free vibration of FG-CNTRC beams.</description><subject>639/301/357/73</subject><subject>639/705/1041</subject><subject>Boundary conditions</subject><subject>Boundary springs</subject><subject>Carbon</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanotubes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vibration</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc9u1DAQxiMEolXpC3BAlrhwMXiceGNfkKqKf1IlLnC2HHu86yprL3bS7b4Iz4vTLaVwwBePZn7zeTxf07wE9hZYK9-VDoSSlEFPgQu1ovsnzSlnnaC85fzpo_ikOS_lmtUjuOpAPW9OuGIgOcBp8_MiErw1diIljfMUUiQ-ZTJtkPiMSG_CkM1d2kQzHkooJHni52iXpBnHA1ln49ARa_KQIo0mpmkekGYMsUrZpZS2u1TChGRAsy1kH6YNqXiYsskHMqQ5uiWwKbqw6JYXzTNvxoLn9_dZ8_3jh2-Xn-nV109fLi-uqO36bqKt4YIjM2xg4J2D3vQK-hYUDL0wznuzUrLrnTSo5Mp1HFshpDRe-sED2PaseX_U3c3DFp3FWEca9S6HbR1IJxP035UYNnqdbrRYtQLargq8uRfI6ceMZdLbUCyOo4mY5qJBibpq6OWCvv4HvU5zrjssulrRCyY7xSrFj5TNqZSM_mEYYHpxXh-d19V5fee83temV4-_8dDy2-cKtEeg1FJcY_7z9n9kfwHX3b7i</recordid><startdate>20171010</startdate><enddate>20171010</enddate><creator>Shi, Zeyu</creator><creator>Yao, Xiongliang</creator><creator>Pang, Fuzhen</creator><creator>Wang, Qingshan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171010</creationdate><title>An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions</title><author>Shi, Zeyu ; Yao, Xiongliang ; Pang, Fuzhen ; Wang, Qingshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-3a252e0a0b01fdd17a79173191b75adffa69847d8ae986d42e35588af8fbf11c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/357/73</topic><topic>639/705/1041</topic><topic>Boundary conditions</topic><topic>Boundary springs</topic><topic>Carbon</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanotubes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zeyu</creatorcontrib><creatorcontrib>Yao, Xiongliang</creatorcontrib><creatorcontrib>Pang, Fuzhen</creatorcontrib><creatorcontrib>Wang, Qingshan</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zeyu</au><au>Yao, Xiongliang</au><au>Pang, Fuzhen</au><au>Wang, Qingshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-10-10</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>12909</spage><epage>18</epage><pages>12909-18</pages><artnum>12909</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We present an exact method to model the free vibration of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) beams with arbitrary boundary conditions based on first-order shear deformation elasticity theory. Five types of carbon nanotube (CNT) distributions are considered. The distributions are either uniform or functionally graded and are assumed to be continuous through the thickness of the beams. The displacements and rotational components of the beams are expressed as a linear combination of the standard Fourier series and several supplementary functions. The formulation is derived using the modified Fourier series and solved using the strong-form solution and the weak-form solution (i.e., the Rayleigh–Ritz method). Both solutions are applicable to various combinations of boundary constraints, including classical boundary conditions and elastic-supported boundary conditions. The accuracy, efficiency and validity of the two solutions presented are demonstrated via comparison with published results. A parametric study is conducted on the influence of several key parameters, namely, the L/h ratio, CNT volume fraction, CNT distribution, boundary spring stiffness and shear correction factor, on the free vibration of FG-CNTRC beams.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29018211</pmid><doi>10.1038/s41598-017-12596-w</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-10, Vol.7 (1), p.12909-18, Article 12909 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635134 |
source | PubMed (Medline); Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/357/73 639/705/1041 Boundary conditions Boundary springs Carbon Humanities and Social Sciences multidisciplinary Nanotubes Science Science (multidisciplinary) Vibration |
title | An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exact%20solution%20for%20the%20free-vibration%20analysis%20of%20functionally%20graded%20carbon-nanotube-reinforced%20composite%20beams%20with%20arbitrary%20boundary%20conditions&rft.jtitle=Scientific%20reports&rft.au=Shi,%20Zeyu&rft.date=2017-10-10&rft.volume=7&rft.issue=1&rft.spage=12909&rft.epage=18&rft.pages=12909-18&rft.artnum=12909&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-12596-w&rft_dat=%3Cproquest_pubme%3E1950181784%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-3a252e0a0b01fdd17a79173191b75adffa69847d8ae986d42e35588af8fbf11c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117508490&rft_id=info:pmid/29018211&rfr_iscdi=true |