Loading…
Reconstructing cancer drug response networks using multitask learning
Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. The reconstructed networks correctly id...
Saved in:
Published in: | BMC systems biology 2017-10, Vol.11 (1), p.96-96, Article 96 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3 |
container_end_page | 96 |
container_issue | 1 |
container_start_page | 96 |
container_title | BMC systems biology |
container_volume | 11 |
creator | Ruffalo, Matthew Stojanov, Petar Pillutla, Venkata Krishna Varma, Rohan Bar-Joseph, Ziv |
description | Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer.
The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug.
Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks. |
doi_str_mv | 10.1186/s12918-017-0471-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959303475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMofv8AL1Lw4qU60yRNchFk8QsEQfQcukm6VrvpmrSK_96UXWX1NMPM875k8hJyhHCGKMvziIVCmQOKHJjAXG6QXRS8yIGD2lzrd8hejK8AnBaF2CY7hUoazsQuuXp0pvOxD4PpGz_LTOWNC5kNwywLLi7SzmXe9Z9deIvZEEdmPrR901fxLWtdFXwaHZCtumqjO1zVffJ8ffU0uc3vH27uJpf3uWGF6HPBpBNQF4UUYKfWSlrWggG31kyRqnGCTChGpSsBwaAyaEvGhBQ12LKm--Ri6bsYpnNnjfN9qFq9CM28Cl-6qxr9d-ObFz3rPjQvKeccksHpyiB074OLvZ430bi2rbzrhqhRccCSCqUSevIPfe2G4NN5I6UoUCZ4onBJmdDFGFz9-xgEPYaklyHp9OF6DEnLpDlev-JX8ZMK_Qb8Go3r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959303475</pqid></control><display><type>article</type><title>Reconstructing cancer drug response networks using multitask learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ruffalo, Matthew ; Stojanov, Petar ; Pillutla, Venkata Krishna ; Varma, Rohan ; Bar-Joseph, Ziv</creator><creatorcontrib>Ruffalo, Matthew ; Stojanov, Petar ; Pillutla, Venkata Krishna ; Varma, Rohan ; Bar-Joseph, Ziv</creatorcontrib><description>Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer.
The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug.
Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.</description><identifier>ISSN: 1752-0509</identifier><identifier>EISSN: 1752-0509</identifier><identifier>DOI: 10.1186/s12918-017-0471-8</identifier><identifier>PMID: 29017547</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Apoptosis ; Breast cancer ; Cancer ; Cell growth ; Drugs ; Experiments ; Gene expression ; Genomes ; Kinases ; Learning ; Melanoma ; Methods ; Networks ; Prostate cancer ; Proteins ; Usability</subject><ispartof>BMC systems biology, 2017-10, Vol.11 (1), p.96-96, Article 96</ispartof><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3</citedby><cites>FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3</cites><orcidid>0000-0003-2222-6169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635550/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1959303475?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29017547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruffalo, Matthew</creatorcontrib><creatorcontrib>Stojanov, Petar</creatorcontrib><creatorcontrib>Pillutla, Venkata Krishna</creatorcontrib><creatorcontrib>Varma, Rohan</creatorcontrib><creatorcontrib>Bar-Joseph, Ziv</creatorcontrib><title>Reconstructing cancer drug response networks using multitask learning</title><title>BMC systems biology</title><addtitle>BMC Syst Biol</addtitle><description>Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer.
The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug.
Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.</description><subject>Apoptosis</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Drugs</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Kinases</subject><subject>Learning</subject><subject>Melanoma</subject><subject>Methods</subject><subject>Networks</subject><subject>Prostate cancer</subject><subject>Proteins</subject><subject>Usability</subject><issn>1752-0509</issn><issn>1752-0509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1LxDAQhoMofv8AL1Lw4qU60yRNchFk8QsEQfQcukm6VrvpmrSK_96UXWX1NMPM875k8hJyhHCGKMvziIVCmQOKHJjAXG6QXRS8yIGD2lzrd8hejK8AnBaF2CY7hUoazsQuuXp0pvOxD4PpGz_LTOWNC5kNwywLLi7SzmXe9Z9deIvZEEdmPrR901fxLWtdFXwaHZCtumqjO1zVffJ8ffU0uc3vH27uJpf3uWGF6HPBpBNQF4UUYKfWSlrWggG31kyRqnGCTChGpSsBwaAyaEvGhBQ12LKm--Ri6bsYpnNnjfN9qFq9CM28Cl-6qxr9d-ObFz3rPjQvKeccksHpyiB074OLvZ430bi2rbzrhqhRccCSCqUSevIPfe2G4NN5I6UoUCZ4onBJmdDFGFz9-xgEPYaklyHp9OF6DEnLpDlev-JX8ZMK_Qb8Go3r</recordid><startdate>20171010</startdate><enddate>20171010</enddate><creator>Ruffalo, Matthew</creator><creator>Stojanov, Petar</creator><creator>Pillutla, Venkata Krishna</creator><creator>Varma, Rohan</creator><creator>Bar-Joseph, Ziv</creator><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2222-6169</orcidid></search><sort><creationdate>20171010</creationdate><title>Reconstructing cancer drug response networks using multitask learning</title><author>Ruffalo, Matthew ; Stojanov, Petar ; Pillutla, Venkata Krishna ; Varma, Rohan ; Bar-Joseph, Ziv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apoptosis</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Drugs</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Kinases</topic><topic>Learning</topic><topic>Melanoma</topic><topic>Methods</topic><topic>Networks</topic><topic>Prostate cancer</topic><topic>Proteins</topic><topic>Usability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruffalo, Matthew</creatorcontrib><creatorcontrib>Stojanov, Petar</creatorcontrib><creatorcontrib>Pillutla, Venkata Krishna</creatorcontrib><creatorcontrib>Varma, Rohan</creatorcontrib><creatorcontrib>Bar-Joseph, Ziv</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruffalo, Matthew</au><au>Stojanov, Petar</au><au>Pillutla, Venkata Krishna</au><au>Varma, Rohan</au><au>Bar-Joseph, Ziv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstructing cancer drug response networks using multitask learning</atitle><jtitle>BMC systems biology</jtitle><addtitle>BMC Syst Biol</addtitle><date>2017-10-10</date><risdate>2017</risdate><volume>11</volume><issue>1</issue><spage>96</spage><epage>96</epage><pages>96-96</pages><artnum>96</artnum><issn>1752-0509</issn><eissn>1752-0509</eissn><abstract>Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer.
The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug.
Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>29017547</pmid><doi>10.1186/s12918-017-0471-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2222-6169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0509 |
ispartof | BMC systems biology, 2017-10, Vol.11 (1), p.96-96, Article 96 |
issn | 1752-0509 1752-0509 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635550 |
source | Publicly Available Content Database; PubMed Central |
subjects | Apoptosis Breast cancer Cancer Cell growth Drugs Experiments Gene expression Genomes Kinases Learning Melanoma Methods Networks Prostate cancer Proteins Usability |
title | Reconstructing cancer drug response networks using multitask learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstructing%20cancer%20drug%20response%20networks%20using%20multitask%20learning&rft.jtitle=BMC%20systems%20biology&rft.au=Ruffalo,%20Matthew&rft.date=2017-10-10&rft.volume=11&rft.issue=1&rft.spage=96&rft.epage=96&rft.pages=96-96&rft.artnum=96&rft.issn=1752-0509&rft.eissn=1752-0509&rft_id=info:doi/10.1186/s12918-017-0471-8&rft_dat=%3Cproquest_pubme%3E1959303475%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1959303475&rft_id=info:pmid/29017547&rfr_iscdi=true |