Loading…

Reconstructing cancer drug response networks using multitask learning

Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. The reconstructed networks correctly id...

Full description

Saved in:
Bibliographic Details
Published in:BMC systems biology 2017-10, Vol.11 (1), p.96-96, Article 96
Main Authors: Ruffalo, Matthew, Stojanov, Petar, Pillutla, Venkata Krishna, Varma, Rohan, Bar-Joseph, Ziv
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3
cites cdi_FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3
container_end_page 96
container_issue 1
container_start_page 96
container_title BMC systems biology
container_volume 11
creator Ruffalo, Matthew
Stojanov, Petar
Pillutla, Venkata Krishna
Varma, Rohan
Bar-Joseph, Ziv
description Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug. Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.
doi_str_mv 10.1186/s12918-017-0471-8
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959303475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMofv8AL1Lw4qU60yRNchFk8QsEQfQcukm6VrvpmrSK_96UXWX1NMPM875k8hJyhHCGKMvziIVCmQOKHJjAXG6QXRS8yIGD2lzrd8hejK8AnBaF2CY7hUoazsQuuXp0pvOxD4PpGz_LTOWNC5kNwywLLi7SzmXe9Z9deIvZEEdmPrR901fxLWtdFXwaHZCtumqjO1zVffJ8ffU0uc3vH27uJpf3uWGF6HPBpBNQF4UUYKfWSlrWggG31kyRqnGCTChGpSsBwaAyaEvGhBQ12LKm--Ri6bsYpnNnjfN9qFq9CM28Cl-6qxr9d-ObFz3rPjQvKeccksHpyiB074OLvZ430bi2rbzrhqhRccCSCqUSevIPfe2G4NN5I6UoUCZ4onBJmdDFGFz9-xgEPYaklyHp9OF6DEnLpDlev-JX8ZMK_Qb8Go3r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959303475</pqid></control><display><type>article</type><title>Reconstructing cancer drug response networks using multitask learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ruffalo, Matthew ; Stojanov, Petar ; Pillutla, Venkata Krishna ; Varma, Rohan ; Bar-Joseph, Ziv</creator><creatorcontrib>Ruffalo, Matthew ; Stojanov, Petar ; Pillutla, Venkata Krishna ; Varma, Rohan ; Bar-Joseph, Ziv</creatorcontrib><description>Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug. Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.</description><identifier>ISSN: 1752-0509</identifier><identifier>EISSN: 1752-0509</identifier><identifier>DOI: 10.1186/s12918-017-0471-8</identifier><identifier>PMID: 29017547</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Apoptosis ; Breast cancer ; Cancer ; Cell growth ; Drugs ; Experiments ; Gene expression ; Genomes ; Kinases ; Learning ; Melanoma ; Methods ; Networks ; Prostate cancer ; Proteins ; Usability</subject><ispartof>BMC systems biology, 2017-10, Vol.11 (1), p.96-96, Article 96</ispartof><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3</citedby><cites>FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3</cites><orcidid>0000-0003-2222-6169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635550/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1959303475?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29017547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruffalo, Matthew</creatorcontrib><creatorcontrib>Stojanov, Petar</creatorcontrib><creatorcontrib>Pillutla, Venkata Krishna</creatorcontrib><creatorcontrib>Varma, Rohan</creatorcontrib><creatorcontrib>Bar-Joseph, Ziv</creatorcontrib><title>Reconstructing cancer drug response networks using multitask learning</title><title>BMC systems biology</title><addtitle>BMC Syst Biol</addtitle><description>Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug. Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.</description><subject>Apoptosis</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Drugs</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Kinases</subject><subject>Learning</subject><subject>Melanoma</subject><subject>Methods</subject><subject>Networks</subject><subject>Prostate cancer</subject><subject>Proteins</subject><subject>Usability</subject><issn>1752-0509</issn><issn>1752-0509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1LxDAQhoMofv8AL1Lw4qU60yRNchFk8QsEQfQcukm6VrvpmrSK_96UXWX1NMPM875k8hJyhHCGKMvziIVCmQOKHJjAXG6QXRS8yIGD2lzrd8hejK8AnBaF2CY7hUoazsQuuXp0pvOxD4PpGz_LTOWNC5kNwywLLi7SzmXe9Z9deIvZEEdmPrR901fxLWtdFXwaHZCtumqjO1zVffJ8ffU0uc3vH27uJpf3uWGF6HPBpBNQF4UUYKfWSlrWggG31kyRqnGCTChGpSsBwaAyaEvGhBQ12LKm--Ri6bsYpnNnjfN9qFq9CM28Cl-6qxr9d-ObFz3rPjQvKeccksHpyiB074OLvZ430bi2rbzrhqhRccCSCqUSevIPfe2G4NN5I6UoUCZ4onBJmdDFGFz9-xgEPYaklyHp9OF6DEnLpDlev-JX8ZMK_Qb8Go3r</recordid><startdate>20171010</startdate><enddate>20171010</enddate><creator>Ruffalo, Matthew</creator><creator>Stojanov, Petar</creator><creator>Pillutla, Venkata Krishna</creator><creator>Varma, Rohan</creator><creator>Bar-Joseph, Ziv</creator><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2222-6169</orcidid></search><sort><creationdate>20171010</creationdate><title>Reconstructing cancer drug response networks using multitask learning</title><author>Ruffalo, Matthew ; Stojanov, Petar ; Pillutla, Venkata Krishna ; Varma, Rohan ; Bar-Joseph, Ziv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apoptosis</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Drugs</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Kinases</topic><topic>Learning</topic><topic>Melanoma</topic><topic>Methods</topic><topic>Networks</topic><topic>Prostate cancer</topic><topic>Proteins</topic><topic>Usability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruffalo, Matthew</creatorcontrib><creatorcontrib>Stojanov, Petar</creatorcontrib><creatorcontrib>Pillutla, Venkata Krishna</creatorcontrib><creatorcontrib>Varma, Rohan</creatorcontrib><creatorcontrib>Bar-Joseph, Ziv</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruffalo, Matthew</au><au>Stojanov, Petar</au><au>Pillutla, Venkata Krishna</au><au>Varma, Rohan</au><au>Bar-Joseph, Ziv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstructing cancer drug response networks using multitask learning</atitle><jtitle>BMC systems biology</jtitle><addtitle>BMC Syst Biol</addtitle><date>2017-10-10</date><risdate>2017</risdate><volume>11</volume><issue>1</issue><spage>96</spage><epage>96</epage><pages>96-96</pages><artnum>96</artnum><issn>1752-0509</issn><eissn>1752-0509</eissn><abstract>Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug. Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>29017547</pmid><doi>10.1186/s12918-017-0471-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2222-6169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0509
ispartof BMC systems biology, 2017-10, Vol.11 (1), p.96-96, Article 96
issn 1752-0509
1752-0509
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635550
source Publicly Available Content Database; PubMed Central
subjects Apoptosis
Breast cancer
Cancer
Cell growth
Drugs
Experiments
Gene expression
Genomes
Kinases
Learning
Melanoma
Methods
Networks
Prostate cancer
Proteins
Usability
title Reconstructing cancer drug response networks using multitask learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstructing%20cancer%20drug%20response%20networks%20using%20multitask%20learning&rft.jtitle=BMC%20systems%20biology&rft.au=Ruffalo,%20Matthew&rft.date=2017-10-10&rft.volume=11&rft.issue=1&rft.spage=96&rft.epage=96&rft.pages=96-96&rft.artnum=96&rft.issn=1752-0509&rft.eissn=1752-0509&rft_id=info:doi/10.1186/s12918-017-0471-8&rft_dat=%3Cproquest_pubme%3E1959303475%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-748e70f22870dbdd836f7405ddcb139bdd81479438e6010c19c1d644787f0d6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1959303475&rft_id=info:pmid/29017547&rfr_iscdi=true