Loading…
Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans
At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluor...
Saved in:
Published in: | Biochemistry (Easton) 2017-09, Vol.56 (35), p.4676-4688 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13 |
---|---|
cites | cdi_FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13 |
container_end_page | 4688 |
container_issue | 35 |
container_start_page | 4676 |
container_title | Biochemistry (Easton) |
container_volume | 56 |
creator | Kim, Surin A D’Acunto, Victoria F Kokona, Bashkim Hofmann, Jennifer Cunningham, Nicole R Bistline, Emily M Garcia, F. Jay Akhtar, Nabeel M Hoffman, Susanna H Doshi, Seema H Ulrich, Kathleen M Jones, Nicholas M Bonini, Nancy M Roberts, Christine M Link, Christopher D Laue, Thomas M Fairman, Robert |
description | At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems. |
doi_str_mv | 10.1021/acs.biochem.7b00518 |
format | article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5639329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f55196403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13</originalsourceid><addsrcrecordid>eNp9kdtq3DAQhkVpabZpn6BQ9ALeSLJl2TeFZXMqpPSih1szlse2gi0tktxmHyVvG6W7Dc1NLoSQZv5vGD5CPnK25kzwM9Bh3RqnR5zXqmVM8uoVWXEpWFbUtXxNVoyxMhN1yU7IuxBu07NgqnhLTkSlqrJUfEXuv2NnZrQRonGW_sLJaRP3dGNh2gcT6B8TR3o5Lc5j0Gg10nOMqP92u55-XSLYSK8XG40d0qEXd6nC6WYYPA4Havo99y643WgmoDNOYN0AIaKnYDu6BbTOj9B2JqaJOKWcDe_Jmx6mgB-O9yn5eXnxY3ud3Xy7-rLd3GRQFDJmqIDlTKquZbLvu7xiJe-LSsm-FaKUbdEKDVrUbV1qlJ3qONS5UIXscl4w4Pkp-Xzg7pZ2xi7tGD1Mzc6bGfy-cWCa5xVrxmZwvxtZ5olUJ0B-AOi0Y_DYP2U5ax5NNclUczTVHE2l1Kf_xz5l_qlJDWeHhsf0rVt8MhJeRD4Aq_enuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, Surin A ; D’Acunto, Victoria F ; Kokona, Bashkim ; Hofmann, Jennifer ; Cunningham, Nicole R ; Bistline, Emily M ; Garcia, F. Jay ; Akhtar, Nabeel M ; Hoffman, Susanna H ; Doshi, Seema H ; Ulrich, Kathleen M ; Jones, Nicholas M ; Bonini, Nancy M ; Roberts, Christine M ; Link, Christopher D ; Laue, Thomas M ; Fairman, Robert</creator><creatorcontrib>Kim, Surin A ; D’Acunto, Victoria F ; Kokona, Bashkim ; Hofmann, Jennifer ; Cunningham, Nicole R ; Bistline, Emily M ; Garcia, F. Jay ; Akhtar, Nabeel M ; Hoffman, Susanna H ; Doshi, Seema H ; Ulrich, Kathleen M ; Jones, Nicholas M ; Bonini, Nancy M ; Roberts, Christine M ; Link, Christopher D ; Laue, Thomas M ; Fairman, Robert</creatorcontrib><description>At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.7b00518</identifier><identifier>PMID: 28786671</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Blotting, Western ; Caenorhabditis elegans - metabolism ; Drosophila melanogaster - metabolism ; Electrophoresis, Gel, Two-Dimensional - methods ; Gene Expression Regulation, Developmental - physiology ; HSP70 Heat-Shock Proteins - metabolism ; Huntingtin Protein - chemistry ; Larva - physiology ; Mutation ; Protein Conformation ; Ultracentrifugation</subject><ispartof>Biochemistry (Easton), 2017-09, Vol.56 (35), p.4676-4688</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13</citedby><cites>FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13</cites><orcidid>0000-0002-8103-0783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28786671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Surin A</creatorcontrib><creatorcontrib>D’Acunto, Victoria F</creatorcontrib><creatorcontrib>Kokona, Bashkim</creatorcontrib><creatorcontrib>Hofmann, Jennifer</creatorcontrib><creatorcontrib>Cunningham, Nicole R</creatorcontrib><creatorcontrib>Bistline, Emily M</creatorcontrib><creatorcontrib>Garcia, F. Jay</creatorcontrib><creatorcontrib>Akhtar, Nabeel M</creatorcontrib><creatorcontrib>Hoffman, Susanna H</creatorcontrib><creatorcontrib>Doshi, Seema H</creatorcontrib><creatorcontrib>Ulrich, Kathleen M</creatorcontrib><creatorcontrib>Jones, Nicholas M</creatorcontrib><creatorcontrib>Bonini, Nancy M</creatorcontrib><creatorcontrib>Roberts, Christine M</creatorcontrib><creatorcontrib>Link, Christopher D</creatorcontrib><creatorcontrib>Laue, Thomas M</creatorcontrib><creatorcontrib>Fairman, Robert</creatorcontrib><title>Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Electrophoresis, Gel, Two-Dimensional - methods</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Huntingtin Protein - chemistry</subject><subject>Larva - physiology</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Ultracentrifugation</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kdtq3DAQhkVpabZpn6BQ9ALeSLJl2TeFZXMqpPSih1szlse2gi0tktxmHyVvG6W7Dc1NLoSQZv5vGD5CPnK25kzwM9Bh3RqnR5zXqmVM8uoVWXEpWFbUtXxNVoyxMhN1yU7IuxBu07NgqnhLTkSlqrJUfEXuv2NnZrQRonGW_sLJaRP3dGNh2gcT6B8TR3o5Lc5j0Gg10nOMqP92u55-XSLYSK8XG40d0qEXd6nC6WYYPA4Havo99y643WgmoDNOYN0AIaKnYDu6BbTOj9B2JqaJOKWcDe_Jmx6mgB-O9yn5eXnxY3ud3Xy7-rLd3GRQFDJmqIDlTKquZbLvu7xiJe-LSsm-FaKUbdEKDVrUbV1qlJ3qONS5UIXscl4w4Pkp-Xzg7pZ2xi7tGD1Mzc6bGfy-cWCa5xVrxmZwvxtZ5olUJ0B-AOi0Y_DYP2U5ax5NNclUczTVHE2l1Kf_xz5l_qlJDWeHhsf0rVt8MhJeRD4Aq_enuw</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Kim, Surin A</creator><creator>D’Acunto, Victoria F</creator><creator>Kokona, Bashkim</creator><creator>Hofmann, Jennifer</creator><creator>Cunningham, Nicole R</creator><creator>Bistline, Emily M</creator><creator>Garcia, F. Jay</creator><creator>Akhtar, Nabeel M</creator><creator>Hoffman, Susanna H</creator><creator>Doshi, Seema H</creator><creator>Ulrich, Kathleen M</creator><creator>Jones, Nicholas M</creator><creator>Bonini, Nancy M</creator><creator>Roberts, Christine M</creator><creator>Link, Christopher D</creator><creator>Laue, Thomas M</creator><creator>Fairman, Robert</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8103-0783</orcidid></search><sort><creationdate>20170905</creationdate><title>Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans</title><author>Kim, Surin A ; D’Acunto, Victoria F ; Kokona, Bashkim ; Hofmann, Jennifer ; Cunningham, Nicole R ; Bistline, Emily M ; Garcia, F. Jay ; Akhtar, Nabeel M ; Hoffman, Susanna H ; Doshi, Seema H ; Ulrich, Kathleen M ; Jones, Nicholas M ; Bonini, Nancy M ; Roberts, Christine M ; Link, Christopher D ; Laue, Thomas M ; Fairman, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Electrophoresis, Gel, Two-Dimensional - methods</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Huntingtin Protein - chemistry</topic><topic>Larva - physiology</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Ultracentrifugation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Surin A</creatorcontrib><creatorcontrib>D’Acunto, Victoria F</creatorcontrib><creatorcontrib>Kokona, Bashkim</creatorcontrib><creatorcontrib>Hofmann, Jennifer</creatorcontrib><creatorcontrib>Cunningham, Nicole R</creatorcontrib><creatorcontrib>Bistline, Emily M</creatorcontrib><creatorcontrib>Garcia, F. Jay</creatorcontrib><creatorcontrib>Akhtar, Nabeel M</creatorcontrib><creatorcontrib>Hoffman, Susanna H</creatorcontrib><creatorcontrib>Doshi, Seema H</creatorcontrib><creatorcontrib>Ulrich, Kathleen M</creatorcontrib><creatorcontrib>Jones, Nicholas M</creatorcontrib><creatorcontrib>Bonini, Nancy M</creatorcontrib><creatorcontrib>Roberts, Christine M</creatorcontrib><creatorcontrib>Link, Christopher D</creatorcontrib><creatorcontrib>Laue, Thomas M</creatorcontrib><creatorcontrib>Fairman, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Surin A</au><au>D’Acunto, Victoria F</au><au>Kokona, Bashkim</au><au>Hofmann, Jennifer</au><au>Cunningham, Nicole R</au><au>Bistline, Emily M</au><au>Garcia, F. Jay</au><au>Akhtar, Nabeel M</au><au>Hoffman, Susanna H</au><au>Doshi, Seema H</au><au>Ulrich, Kathleen M</au><au>Jones, Nicholas M</au><au>Bonini, Nancy M</au><au>Roberts, Christine M</au><au>Link, Christopher D</au><au>Laue, Thomas M</au><au>Fairman, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>56</volume><issue>35</issue><spage>4676</spage><epage>4688</epage><pages>4676-4688</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28786671</pmid><doi>10.1021/acs.biochem.7b00518</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8103-0783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2017-09, Vol.56 (35), p.4676-4688 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5639329 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Blotting, Western Caenorhabditis elegans - metabolism Drosophila melanogaster - metabolism Electrophoresis, Gel, Two-Dimensional - methods Gene Expression Regulation, Developmental - physiology HSP70 Heat-Shock Proteins - metabolism Huntingtin Protein - chemistry Larva - physiology Mutation Protein Conformation Ultracentrifugation |
title | Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sedimentation%20Velocity%20Analysis%20with%20Fluorescence%20Detection%20of%20Mutant%20Huntingtin%20Exon%201%20Aggregation%20in%20Drosophila%20melanogaster%20and%20Caenorhabditis%20elegans&rft.jtitle=Biochemistry%20(Easton)&rft.au=Kim,%20Surin%20A&rft.date=2017-09-05&rft.volume=56&rft.issue=35&rft.spage=4676&rft.epage=4688&rft.pages=4676-4688&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.7b00518&rft_dat=%3Cacs_pubme%3Ef55196403%3C/acs_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/28786671&rfr_iscdi=true |