Loading…

Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans

At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluor...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2017-09, Vol.56 (35), p.4676-4688
Main Authors: Kim, Surin A, D’Acunto, Victoria F, Kokona, Bashkim, Hofmann, Jennifer, Cunningham, Nicole R, Bistline, Emily M, Garcia, F. Jay, Akhtar, Nabeel M, Hoffman, Susanna H, Doshi, Seema H, Ulrich, Kathleen M, Jones, Nicholas M, Bonini, Nancy M, Roberts, Christine M, Link, Christopher D, Laue, Thomas M, Fairman, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13
cites cdi_FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13
container_end_page 4688
container_issue 35
container_start_page 4676
container_title Biochemistry (Easton)
container_volume 56
creator Kim, Surin A
D’Acunto, Victoria F
Kokona, Bashkim
Hofmann, Jennifer
Cunningham, Nicole R
Bistline, Emily M
Garcia, F. Jay
Akhtar, Nabeel M
Hoffman, Susanna H
Doshi, Seema H
Ulrich, Kathleen M
Jones, Nicholas M
Bonini, Nancy M
Roberts, Christine M
Link, Christopher D
Laue, Thomas M
Fairman, Robert
description At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.
doi_str_mv 10.1021/acs.biochem.7b00518
format article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5639329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f55196403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13</originalsourceid><addsrcrecordid>eNp9kdtq3DAQhkVpabZpn6BQ9ALeSLJl2TeFZXMqpPSih1szlse2gi0tktxmHyVvG6W7Dc1NLoSQZv5vGD5CPnK25kzwM9Bh3RqnR5zXqmVM8uoVWXEpWFbUtXxNVoyxMhN1yU7IuxBu07NgqnhLTkSlqrJUfEXuv2NnZrQRonGW_sLJaRP3dGNh2gcT6B8TR3o5Lc5j0Gg10nOMqP92u55-XSLYSK8XG40d0qEXd6nC6WYYPA4Havo99y643WgmoDNOYN0AIaKnYDu6BbTOj9B2JqaJOKWcDe_Jmx6mgB-O9yn5eXnxY3ud3Xy7-rLd3GRQFDJmqIDlTKquZbLvu7xiJe-LSsm-FaKUbdEKDVrUbV1qlJ3qONS5UIXscl4w4Pkp-Xzg7pZ2xi7tGD1Mzc6bGfy-cWCa5xVrxmZwvxtZ5olUJ0B-AOi0Y_DYP2U5ax5NNclUczTVHE2l1Kf_xz5l_qlJDWeHhsf0rVt8MhJeRD4Aq_enuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, Surin A ; D’Acunto, Victoria F ; Kokona, Bashkim ; Hofmann, Jennifer ; Cunningham, Nicole R ; Bistline, Emily M ; Garcia, F. Jay ; Akhtar, Nabeel M ; Hoffman, Susanna H ; Doshi, Seema H ; Ulrich, Kathleen M ; Jones, Nicholas M ; Bonini, Nancy M ; Roberts, Christine M ; Link, Christopher D ; Laue, Thomas M ; Fairman, Robert</creator><creatorcontrib>Kim, Surin A ; D’Acunto, Victoria F ; Kokona, Bashkim ; Hofmann, Jennifer ; Cunningham, Nicole R ; Bistline, Emily M ; Garcia, F. Jay ; Akhtar, Nabeel M ; Hoffman, Susanna H ; Doshi, Seema H ; Ulrich, Kathleen M ; Jones, Nicholas M ; Bonini, Nancy M ; Roberts, Christine M ; Link, Christopher D ; Laue, Thomas M ; Fairman, Robert</creatorcontrib><description>At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.7b00518</identifier><identifier>PMID: 28786671</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Blotting, Western ; Caenorhabditis elegans - metabolism ; Drosophila melanogaster - metabolism ; Electrophoresis, Gel, Two-Dimensional - methods ; Gene Expression Regulation, Developmental - physiology ; HSP70 Heat-Shock Proteins - metabolism ; Huntingtin Protein - chemistry ; Larva - physiology ; Mutation ; Protein Conformation ; Ultracentrifugation</subject><ispartof>Biochemistry (Easton), 2017-09, Vol.56 (35), p.4676-4688</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13</citedby><cites>FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13</cites><orcidid>0000-0002-8103-0783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28786671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Surin A</creatorcontrib><creatorcontrib>D’Acunto, Victoria F</creatorcontrib><creatorcontrib>Kokona, Bashkim</creatorcontrib><creatorcontrib>Hofmann, Jennifer</creatorcontrib><creatorcontrib>Cunningham, Nicole R</creatorcontrib><creatorcontrib>Bistline, Emily M</creatorcontrib><creatorcontrib>Garcia, F. Jay</creatorcontrib><creatorcontrib>Akhtar, Nabeel M</creatorcontrib><creatorcontrib>Hoffman, Susanna H</creatorcontrib><creatorcontrib>Doshi, Seema H</creatorcontrib><creatorcontrib>Ulrich, Kathleen M</creatorcontrib><creatorcontrib>Jones, Nicholas M</creatorcontrib><creatorcontrib>Bonini, Nancy M</creatorcontrib><creatorcontrib>Roberts, Christine M</creatorcontrib><creatorcontrib>Link, Christopher D</creatorcontrib><creatorcontrib>Laue, Thomas M</creatorcontrib><creatorcontrib>Fairman, Robert</creatorcontrib><title>Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Electrophoresis, Gel, Two-Dimensional - methods</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Huntingtin Protein - chemistry</subject><subject>Larva - physiology</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Ultracentrifugation</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kdtq3DAQhkVpabZpn6BQ9ALeSLJl2TeFZXMqpPSih1szlse2gi0tktxmHyVvG6W7Dc1NLoSQZv5vGD5CPnK25kzwM9Bh3RqnR5zXqmVM8uoVWXEpWFbUtXxNVoyxMhN1yU7IuxBu07NgqnhLTkSlqrJUfEXuv2NnZrQRonGW_sLJaRP3dGNh2gcT6B8TR3o5Lc5j0Gg10nOMqP92u55-XSLYSK8XG40d0qEXd6nC6WYYPA4Havo99y643WgmoDNOYN0AIaKnYDu6BbTOj9B2JqaJOKWcDe_Jmx6mgB-O9yn5eXnxY3ud3Xy7-rLd3GRQFDJmqIDlTKquZbLvu7xiJe-LSsm-FaKUbdEKDVrUbV1qlJ3qONS5UIXscl4w4Pkp-Xzg7pZ2xi7tGD1Mzc6bGfy-cWCa5xVrxmZwvxtZ5olUJ0B-AOi0Y_DYP2U5ax5NNclUczTVHE2l1Kf_xz5l_qlJDWeHhsf0rVt8MhJeRD4Aq_enuw</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Kim, Surin A</creator><creator>D’Acunto, Victoria F</creator><creator>Kokona, Bashkim</creator><creator>Hofmann, Jennifer</creator><creator>Cunningham, Nicole R</creator><creator>Bistline, Emily M</creator><creator>Garcia, F. Jay</creator><creator>Akhtar, Nabeel M</creator><creator>Hoffman, Susanna H</creator><creator>Doshi, Seema H</creator><creator>Ulrich, Kathleen M</creator><creator>Jones, Nicholas M</creator><creator>Bonini, Nancy M</creator><creator>Roberts, Christine M</creator><creator>Link, Christopher D</creator><creator>Laue, Thomas M</creator><creator>Fairman, Robert</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8103-0783</orcidid></search><sort><creationdate>20170905</creationdate><title>Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans</title><author>Kim, Surin A ; D’Acunto, Victoria F ; Kokona, Bashkim ; Hofmann, Jennifer ; Cunningham, Nicole R ; Bistline, Emily M ; Garcia, F. Jay ; Akhtar, Nabeel M ; Hoffman, Susanna H ; Doshi, Seema H ; Ulrich, Kathleen M ; Jones, Nicholas M ; Bonini, Nancy M ; Roberts, Christine M ; Link, Christopher D ; Laue, Thomas M ; Fairman, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Electrophoresis, Gel, Two-Dimensional - methods</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Huntingtin Protein - chemistry</topic><topic>Larva - physiology</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Ultracentrifugation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Surin A</creatorcontrib><creatorcontrib>D’Acunto, Victoria F</creatorcontrib><creatorcontrib>Kokona, Bashkim</creatorcontrib><creatorcontrib>Hofmann, Jennifer</creatorcontrib><creatorcontrib>Cunningham, Nicole R</creatorcontrib><creatorcontrib>Bistline, Emily M</creatorcontrib><creatorcontrib>Garcia, F. Jay</creatorcontrib><creatorcontrib>Akhtar, Nabeel M</creatorcontrib><creatorcontrib>Hoffman, Susanna H</creatorcontrib><creatorcontrib>Doshi, Seema H</creatorcontrib><creatorcontrib>Ulrich, Kathleen M</creatorcontrib><creatorcontrib>Jones, Nicholas M</creatorcontrib><creatorcontrib>Bonini, Nancy M</creatorcontrib><creatorcontrib>Roberts, Christine M</creatorcontrib><creatorcontrib>Link, Christopher D</creatorcontrib><creatorcontrib>Laue, Thomas M</creatorcontrib><creatorcontrib>Fairman, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Surin A</au><au>D’Acunto, Victoria F</au><au>Kokona, Bashkim</au><au>Hofmann, Jennifer</au><au>Cunningham, Nicole R</au><au>Bistline, Emily M</au><au>Garcia, F. Jay</au><au>Akhtar, Nabeel M</au><au>Hoffman, Susanna H</au><au>Doshi, Seema H</au><au>Ulrich, Kathleen M</au><au>Jones, Nicholas M</au><au>Bonini, Nancy M</au><au>Roberts, Christine M</au><au>Link, Christopher D</au><au>Laue, Thomas M</au><au>Fairman, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>56</volume><issue>35</issue><spage>4676</spage><epage>4688</epage><pages>4676-4688</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington’s disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28786671</pmid><doi>10.1021/acs.biochem.7b00518</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8103-0783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2017-09, Vol.56 (35), p.4676-4688
issn 0006-2960
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5639329
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Blotting, Western
Caenorhabditis elegans - metabolism
Drosophila melanogaster - metabolism
Electrophoresis, Gel, Two-Dimensional - methods
Gene Expression Regulation, Developmental - physiology
HSP70 Heat-Shock Proteins - metabolism
Huntingtin Protein - chemistry
Larva - physiology
Mutation
Protein Conformation
Ultracentrifugation
title Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sedimentation%20Velocity%20Analysis%20with%20Fluorescence%20Detection%20of%20Mutant%20Huntingtin%20Exon%201%20Aggregation%20in%20Drosophila%20melanogaster%20and%20Caenorhabditis%20elegans&rft.jtitle=Biochemistry%20(Easton)&rft.au=Kim,%20Surin%20A&rft.date=2017-09-05&rft.volume=56&rft.issue=35&rft.spage=4676&rft.epage=4688&rft.pages=4676-4688&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.7b00518&rft_dat=%3Cacs_pubme%3Ef55196403%3C/acs_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a445t-e7a03057db05ffd38061f4875fb2265b4b2cac29b96ce5d7d1a932745d3140a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/28786671&rfr_iscdi=true