Loading…

Mutagenic cost of ribonucleotides in bacterial DNA

Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucle...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-10, Vol.114 (44), p.11733-11738
Main Authors: Schroeder, Jeremy W., Randall, Justin R., Hirst, William G., O’Donnell, Michael E., Simmons, Lyle A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3
cites cdi_FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3
container_end_page 11738
container_issue 44
container_start_page 11733
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Schroeder, Jeremy W.
Randall, Justin R.
Hirst, William G.
O’Donnell, Michael E.
Simmons, Lyle A.
description Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.
doi_str_mv 10.1073/pnas.1710995114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26488857</jstor_id><sourcerecordid>26488857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMotlbXrpQB19Pm_dgIUp9QddN9yGQyNWU6qcmM4L93Smurq3vhfPfcwwHgEsExgoJM1o1JYyQQVIohRI_AsF9RzqmCx2AIIRa5pJgOwFlKSwihYhKeggFWUEjCyBDg1641C9d4m9mQ2ixUWfRFaDpbu9D60qXMN1lhbOuiN3V2_3Z3Dk4qUyd3sZsjMH98mE-f89n708v0bpZbBlWbCyY4KzA3hVOUE4dNZUpaVIwJSktkDFKWkorgykgoGSZOqsJII0VJJbJkBG63tuuuWLnSuqaNptbr6FcmfutgvP6vNP5DL8KXZlxwhWFvcLMziOGzc6nVy9DFpo-skZKcENUn6anJlrIxpBRdtf-AoN50rDcd60PH_cX132B7_rfUHrjaAsvUhnjQOZVSMkF-AGqlgaM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986339574</pqid></control><display><type>article</type><title>Mutagenic cost of ribonucleotides in bacterial DNA</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Schroeder, Jeremy W. ; Randall, Justin R. ; Hirst, William G. ; O’Donnell, Michael E. ; Simmons, Lyle A.</creator><creatorcontrib>Schroeder, Jeremy W. ; Randall, Justin R. ; Hirst, William G. ; O’Donnell, Michael E. ; Simmons, Lyle A.</creatorcontrib><description>Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1710995114</identifier><identifier>PMID: 29078353</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Base pairs ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; DNA-directed DNA polymerase ; Errors ; Genomes ; Integrity ; Mutagenesis ; Nucleotide excision repair ; Proteins ; Repair ; Ribonuclease H2 ; Ribonucleases ; Ribonucleotides</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (44), p.11733-11738</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2017 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Oct 31, 2017</rights><rights>Copyright © 2017 the Author(s). Published by PNAS. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3</citedby><cites>FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26488857$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26488857$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29078353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, Jeremy W.</creatorcontrib><creatorcontrib>Randall, Justin R.</creatorcontrib><creatorcontrib>Hirst, William G.</creatorcontrib><creatorcontrib>O’Donnell, Michael E.</creatorcontrib><creatorcontrib>Simmons, Lyle A.</creatorcontrib><title>Mutagenic cost of ribonucleotides in bacterial DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.</description><subject>Bacteria</subject><subject>Base pairs</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>DNA-directed DNA polymerase</subject><subject>Errors</subject><subject>Genomes</subject><subject>Integrity</subject><subject>Mutagenesis</subject><subject>Nucleotide excision repair</subject><subject>Proteins</subject><subject>Repair</subject><subject>Ribonuclease H2</subject><subject>Ribonucleases</subject><subject>Ribonucleotides</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhYMotlbXrpQB19Pm_dgIUp9QddN9yGQyNWU6qcmM4L93Smurq3vhfPfcwwHgEsExgoJM1o1JYyQQVIohRI_AsF9RzqmCx2AIIRa5pJgOwFlKSwihYhKeggFWUEjCyBDg1641C9d4m9mQ2ixUWfRFaDpbu9D60qXMN1lhbOuiN3V2_3Z3Dk4qUyd3sZsjMH98mE-f89n708v0bpZbBlWbCyY4KzA3hVOUE4dNZUpaVIwJSktkDFKWkorgykgoGSZOqsJII0VJJbJkBG63tuuuWLnSuqaNptbr6FcmfutgvP6vNP5DL8KXZlxwhWFvcLMziOGzc6nVy9DFpo-skZKcENUn6anJlrIxpBRdtf-AoN50rDcd60PH_cX132B7_rfUHrjaAsvUhnjQOZVSMkF-AGqlgaM</recordid><startdate>20171031</startdate><enddate>20171031</enddate><creator>Schroeder, Jeremy W.</creator><creator>Randall, Justin R.</creator><creator>Hirst, William G.</creator><creator>O’Donnell, Michael E.</creator><creator>Simmons, Lyle A.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20171031</creationdate><title>Mutagenic cost of ribonucleotides in bacterial DNA</title><author>Schroeder, Jeremy W. ; Randall, Justin R. ; Hirst, William G. ; O’Donnell, Michael E. ; Simmons, Lyle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Base pairs</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>DNA-directed DNA polymerase</topic><topic>Errors</topic><topic>Genomes</topic><topic>Integrity</topic><topic>Mutagenesis</topic><topic>Nucleotide excision repair</topic><topic>Proteins</topic><topic>Repair</topic><topic>Ribonuclease H2</topic><topic>Ribonucleases</topic><topic>Ribonucleotides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Jeremy W.</creatorcontrib><creatorcontrib>Randall, Justin R.</creatorcontrib><creatorcontrib>Hirst, William G.</creatorcontrib><creatorcontrib>O’Donnell, Michael E.</creatorcontrib><creatorcontrib>Simmons, Lyle A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Jeremy W.</au><au>Randall, Justin R.</au><au>Hirst, William G.</au><au>O’Donnell, Michael E.</au><au>Simmons, Lyle A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutagenic cost of ribonucleotides in bacterial DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-10-31</date><risdate>2017</risdate><volume>114</volume><issue>44</issue><spage>11733</spage><epage>11738</epage><pages>11733-11738</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29078353</pmid><doi>10.1073/pnas.1710995114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (44), p.11733-11738
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676920
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Bacteria
Base pairs
Biological Sciences
Deoxyribonucleic acid
DNA
DNA polymerase
DNA-directed DNA polymerase
Errors
Genomes
Integrity
Mutagenesis
Nucleotide excision repair
Proteins
Repair
Ribonuclease H2
Ribonucleases
Ribonucleotides
title Mutagenic cost of ribonucleotides in bacterial DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutagenic%20cost%20of%20ribonucleotides%20in%20bacterial%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schroeder,%20Jeremy%20W.&rft.date=2017-10-31&rft.volume=114&rft.issue=44&rft.spage=11733&rft.epage=11738&rft.pages=11733-11738&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1710995114&rft_dat=%3Cjstor_pubme%3E26488857%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986339574&rft_id=info:pmid/29078353&rft_jstor_id=26488857&rfr_iscdi=true