Loading…
Mutagenic cost of ribonucleotides in bacterial DNA
Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucle...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2017-10, Vol.114 (44), p.11733-11738 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3 |
container_end_page | 11738 |
container_issue | 44 |
container_start_page | 11733 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Schroeder, Jeremy W. Randall, Justin R. Hirst, William G. O’Donnell, Michael E. Simmons, Lyle A. |
description | Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE. |
doi_str_mv | 10.1073/pnas.1710995114 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26488857</jstor_id><sourcerecordid>26488857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMotlbXrpQB19Pm_dgIUp9QddN9yGQyNWU6qcmM4L93Smurq3vhfPfcwwHgEsExgoJM1o1JYyQQVIohRI_AsF9RzqmCx2AIIRa5pJgOwFlKSwihYhKeggFWUEjCyBDg1641C9d4m9mQ2ixUWfRFaDpbu9D60qXMN1lhbOuiN3V2_3Z3Dk4qUyd3sZsjMH98mE-f89n708v0bpZbBlWbCyY4KzA3hVOUE4dNZUpaVIwJSktkDFKWkorgykgoGSZOqsJII0VJJbJkBG63tuuuWLnSuqaNptbr6FcmfutgvP6vNP5DL8KXZlxwhWFvcLMziOGzc6nVy9DFpo-skZKcENUn6anJlrIxpBRdtf-AoN50rDcd60PH_cX132B7_rfUHrjaAsvUhnjQOZVSMkF-AGqlgaM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986339574</pqid></control><display><type>article</type><title>Mutagenic cost of ribonucleotides in bacterial DNA</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Schroeder, Jeremy W. ; Randall, Justin R. ; Hirst, William G. ; O’Donnell, Michael E. ; Simmons, Lyle A.</creator><creatorcontrib>Schroeder, Jeremy W. ; Randall, Justin R. ; Hirst, William G. ; O’Donnell, Michael E. ; Simmons, Lyle A.</creatorcontrib><description>Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1710995114</identifier><identifier>PMID: 29078353</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Base pairs ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; DNA-directed DNA polymerase ; Errors ; Genomes ; Integrity ; Mutagenesis ; Nucleotide excision repair ; Proteins ; Repair ; Ribonuclease H2 ; Ribonucleases ; Ribonucleotides</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (44), p.11733-11738</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2017 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Oct 31, 2017</rights><rights>Copyright © 2017 the Author(s). Published by PNAS. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3</citedby><cites>FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26488857$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26488857$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29078353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, Jeremy W.</creatorcontrib><creatorcontrib>Randall, Justin R.</creatorcontrib><creatorcontrib>Hirst, William G.</creatorcontrib><creatorcontrib>O’Donnell, Michael E.</creatorcontrib><creatorcontrib>Simmons, Lyle A.</creatorcontrib><title>Mutagenic cost of ribonucleotides in bacterial DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.</description><subject>Bacteria</subject><subject>Base pairs</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>DNA-directed DNA polymerase</subject><subject>Errors</subject><subject>Genomes</subject><subject>Integrity</subject><subject>Mutagenesis</subject><subject>Nucleotide excision repair</subject><subject>Proteins</subject><subject>Repair</subject><subject>Ribonuclease H2</subject><subject>Ribonucleases</subject><subject>Ribonucleotides</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhYMotlbXrpQB19Pm_dgIUp9QddN9yGQyNWU6qcmM4L93Smurq3vhfPfcwwHgEsExgoJM1o1JYyQQVIohRI_AsF9RzqmCx2AIIRa5pJgOwFlKSwihYhKeggFWUEjCyBDg1641C9d4m9mQ2ixUWfRFaDpbu9D60qXMN1lhbOuiN3V2_3Z3Dk4qUyd3sZsjMH98mE-f89n708v0bpZbBlWbCyY4KzA3hVOUE4dNZUpaVIwJSktkDFKWkorgykgoGSZOqsJII0VJJbJkBG63tuuuWLnSuqaNptbr6FcmfutgvP6vNP5DL8KXZlxwhWFvcLMziOGzc6nVy9DFpo-skZKcENUn6anJlrIxpBRdtf-AoN50rDcd60PH_cX132B7_rfUHrjaAsvUhnjQOZVSMkF-AGqlgaM</recordid><startdate>20171031</startdate><enddate>20171031</enddate><creator>Schroeder, Jeremy W.</creator><creator>Randall, Justin R.</creator><creator>Hirst, William G.</creator><creator>O’Donnell, Michael E.</creator><creator>Simmons, Lyle A.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20171031</creationdate><title>Mutagenic cost of ribonucleotides in bacterial DNA</title><author>Schroeder, Jeremy W. ; Randall, Justin R. ; Hirst, William G. ; O’Donnell, Michael E. ; Simmons, Lyle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Base pairs</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>DNA-directed DNA polymerase</topic><topic>Errors</topic><topic>Genomes</topic><topic>Integrity</topic><topic>Mutagenesis</topic><topic>Nucleotide excision repair</topic><topic>Proteins</topic><topic>Repair</topic><topic>Ribonuclease H2</topic><topic>Ribonucleases</topic><topic>Ribonucleotides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Jeremy W.</creatorcontrib><creatorcontrib>Randall, Justin R.</creatorcontrib><creatorcontrib>Hirst, William G.</creatorcontrib><creatorcontrib>O’Donnell, Michael E.</creatorcontrib><creatorcontrib>Simmons, Lyle A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Jeremy W.</au><au>Randall, Justin R.</au><au>Hirst, William G.</au><au>O’Donnell, Michael E.</au><au>Simmons, Lyle A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutagenic cost of ribonucleotides in bacterial DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-10-31</date><risdate>2017</risdate><volume>114</volume><issue>44</issue><spage>11733</spage><epage>11738</epage><pages>11733-11738</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29078353</pmid><doi>10.1073/pnas.1710995114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (44), p.11733-11738 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676920 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Bacteria Base pairs Biological Sciences Deoxyribonucleic acid DNA DNA polymerase DNA-directed DNA polymerase Errors Genomes Integrity Mutagenesis Nucleotide excision repair Proteins Repair Ribonuclease H2 Ribonucleases Ribonucleotides |
title | Mutagenic cost of ribonucleotides in bacterial DNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutagenic%20cost%20of%20ribonucleotides%20in%20bacterial%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schroeder,%20Jeremy%20W.&rft.date=2017-10-31&rft.volume=114&rft.issue=44&rft.spage=11733&rft.epage=11738&rft.pages=11733-11738&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1710995114&rft_dat=%3Cjstor_pubme%3E26488857%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-75765b26abe9463e2afad4bf55744d1aa19c43f32fa808523e89ba8a87d481c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986339574&rft_id=info:pmid/29078353&rft_jstor_id=26488857&rfr_iscdi=true |