Loading…
Cortical actin contributes to spatial organization of ER-PM junctions
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate crucial activities ranging from Ca signaling to lipid metabolism. Spatial organization of ER-PM junctions may modulate the extent and location of these cellular activities. However, the morphology and distribution of ER-PM junctions are...
Saved in:
Published in: | Molecular biology of the cell 2017-11, Vol.28 (23), p.3171-3180 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate crucial activities ranging from Ca
signaling to lipid metabolism. Spatial organization of ER-PM junctions may modulate the extent and location of these cellular activities. However, the morphology and distribution of ER-PM junctions are not well characterized. Using photoactivated localization microscopy, we reveal that the contact area of single ER-PM junctions is mainly oblong with the dimensions of ∼120 nm × ∼80 nm in HeLa cells. Using total internal reflection fluorescence microscopy and structure illumination microscopy, we show that cortical actin contributes to spatial distribution and stability of ER-PM junctions. Further functional assays suggest that intact F-actin architecture is required for phosphatidylinositol 4,5-bisphosphate homeostasis mediated by Nir2 at ER-PM junctions. Together, our study provides quantitative information on spatial organization of ER-PM junctions that is in part regulated by F-actin. We envision that functions of ER-PM junctions can be differentially regulated through dynamic actin remodeling during cellular processes. |
---|---|
ISSN: | 1059-1524 1939-4586 |
DOI: | 10.1091/mbc.E17-06-0377 |