Loading…
Synthesis of uniform single layer WS2 for tunable photoluminescence
Two-dimensional transition metal dichalcogenides (2D TMDs) have gained great interest due to their unique tunable bandgap as a function of the number of layers. Especially, single-layer tungsten disulfides (WS 2 ) is a direct band gap semiconductor with a gap of 2.1 eV featuring strong photoluminesc...
Saved in:
Published in: | Scientific reports 2017-11, Vol.7 (1), p.1-8, Article 16121 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-78f86cc7669bab6b8ee91481b2e99ca991e09c700fbeec9785f67f899667ec373 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-78f86cc7669bab6b8ee91481b2e99ca991e09c700fbeec9785f67f899667ec373 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 1 |
container_title | Scientific reports |
container_volume | 7 |
creator | Park, Juhong Kim, Min Su Cha, Eunho Kim, Jeongyong Choi, Wonbong |
description | Two-dimensional transition metal dichalcogenides (2D TMDs) have gained great interest due to their unique tunable bandgap as a function of the number of layers. Especially, single-layer tungsten disulfides (WS
2
) is a direct band gap semiconductor with a gap of 2.1 eV featuring strong photoluminescence and large exciton binding energy. Although synthesis of MoS
2
and their layer dependent properties have been studied rigorously, little attention has been paid to the formation of single-layer WS
2
and its layer dependent properties. Here we report the scalable synthesis of uniform single-layer WS
2
film by a two-step chemical vapor deposition (CVD) method followed by a laser thinning process. The PL intensity increases six-fold, while the PL peak shifts from 1.92 eV to 1.97 eV during the laser thinning from few-layers to single-layer. We find from the analysis of exciton complexes that both a neutral exciton and a trion increases with decreasing WS
2
film thickness; however, the neutral exciton is predominant in single-layer WS
2
. The binding energies of trion and biexciton for single-layer WS
2
are experimentally characterized at 35 meV and 60 meV, respectively. The tunable optical properties by precise control of WS
2
layers could empower a great deal of flexibility in designing atomically thin optoelectronic devices. |
doi_str_mv | 10.1038/s41598-017-16251-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5700996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967846695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-78f86cc7669bab6b8ee91481b2e99ca991e09c700fbeec9785f67f899667ec373</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMozqD-AVcFN26qSdq8NoIMvmDAxSguQxpvZyptMiatMP_ejBUZBbNJuPnOSQ4HoVOCLwgu5GUsCVMyx0TkhFNGcrqHphSXLKcFpfs75wk6ifENp8WoKok6RBOqiMCMlFM0W2xcv4LYxMzX2eCa2ocui41btpC1ZgMhe1nQLE2zfnCmStP1yve-HbrGQbTgLByjg9q0EU6-9yP0fHvzNLvP5493D7PreW4ZEX0uZC25tYJzVZmKVxJAkVKSioJS1ihFACsrMK4rAKuEZDUXtVSKcwG2EMURuhp910PVwWt6uw-m1evQdCZstDeN_n3jmpVe-g_NkmmySQbn3wbBvw8Qe901KULbGgd-iJooLsuSqqJI6Nkf9M0PwaV4W0rIMqVgiaIjZYOPMUD98xmC9bYmPdakU036qyZNk6gYRTHBbglhx_p_1ScX3ZQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967846695</pqid></control><display><type>article</type><title>Synthesis of uniform single layer WS2 for tunable photoluminescence</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Park, Juhong ; Kim, Min Su ; Cha, Eunho ; Kim, Jeongyong ; Choi, Wonbong</creator><creatorcontrib>Park, Juhong ; Kim, Min Su ; Cha, Eunho ; Kim, Jeongyong ; Choi, Wonbong</creatorcontrib><description>Two-dimensional transition metal dichalcogenides (2D TMDs) have gained great interest due to their unique tunable bandgap as a function of the number of layers. Especially, single-layer tungsten disulfides (WS
2
) is a direct band gap semiconductor with a gap of 2.1 eV featuring strong photoluminescence and large exciton binding energy. Although synthesis of MoS
2
and their layer dependent properties have been studied rigorously, little attention has been paid to the formation of single-layer WS
2
and its layer dependent properties. Here we report the scalable synthesis of uniform single-layer WS
2
film by a two-step chemical vapor deposition (CVD) method followed by a laser thinning process. The PL intensity increases six-fold, while the PL peak shifts from 1.92 eV to 1.97 eV during the laser thinning from few-layers to single-layer. We find from the analysis of exciton complexes that both a neutral exciton and a trion increases with decreasing WS
2
film thickness; however, the neutral exciton is predominant in single-layer WS
2
. The binding energies of trion and biexciton for single-layer WS
2
are experimentally characterized at 35 meV and 60 meV, respectively. The tunable optical properties by precise control of WS
2
layers could empower a great deal of flexibility in designing atomically thin optoelectronic devices.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-16251-2</identifier><identifier>PMID: 29170514</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 140/146 ; 639/301/357/1018 ; 639/925/357/1018 ; Chemical vapor deposition ; Humanities and Social Sciences ; Luminescence ; multidisciplinary ; Optical properties ; Photons ; Science ; Science (multidisciplinary) ; Thinning ; Tungsten</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.1-8, Article 16121</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-78f86cc7669bab6b8ee91481b2e99ca991e09c700fbeec9785f67f899667ec373</citedby><cites>FETCH-LOGICAL-c517t-78f86cc7669bab6b8ee91481b2e99ca991e09c700fbeec9785f67f899667ec373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1967846695/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1967846695?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Park, Juhong</creatorcontrib><creatorcontrib>Kim, Min Su</creatorcontrib><creatorcontrib>Cha, Eunho</creatorcontrib><creatorcontrib>Kim, Jeongyong</creatorcontrib><creatorcontrib>Choi, Wonbong</creatorcontrib><title>Synthesis of uniform single layer WS2 for tunable photoluminescence</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Two-dimensional transition metal dichalcogenides (2D TMDs) have gained great interest due to their unique tunable bandgap as a function of the number of layers. Especially, single-layer tungsten disulfides (WS
2
) is a direct band gap semiconductor with a gap of 2.1 eV featuring strong photoluminescence and large exciton binding energy. Although synthesis of MoS
2
and their layer dependent properties have been studied rigorously, little attention has been paid to the formation of single-layer WS
2
and its layer dependent properties. Here we report the scalable synthesis of uniform single-layer WS
2
film by a two-step chemical vapor deposition (CVD) method followed by a laser thinning process. The PL intensity increases six-fold, while the PL peak shifts from 1.92 eV to 1.97 eV during the laser thinning from few-layers to single-layer. We find from the analysis of exciton complexes that both a neutral exciton and a trion increases with decreasing WS
2
film thickness; however, the neutral exciton is predominant in single-layer WS
2
. The binding energies of trion and biexciton for single-layer WS
2
are experimentally characterized at 35 meV and 60 meV, respectively. The tunable optical properties by precise control of WS
2
layers could empower a great deal of flexibility in designing atomically thin optoelectronic devices.</description><subject>140/133</subject><subject>140/146</subject><subject>639/301/357/1018</subject><subject>639/925/357/1018</subject><subject>Chemical vapor deposition</subject><subject>Humanities and Social Sciences</subject><subject>Luminescence</subject><subject>multidisciplinary</subject><subject>Optical properties</subject><subject>Photons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thinning</subject><subject>Tungsten</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kUtLxDAUhYMozqD-AVcFN26qSdq8NoIMvmDAxSguQxpvZyptMiatMP_ejBUZBbNJuPnOSQ4HoVOCLwgu5GUsCVMyx0TkhFNGcrqHphSXLKcFpfs75wk6ifENp8WoKok6RBOqiMCMlFM0W2xcv4LYxMzX2eCa2ocui41btpC1ZgMhe1nQLE2zfnCmStP1yve-HbrGQbTgLByjg9q0EU6-9yP0fHvzNLvP5493D7PreW4ZEX0uZC25tYJzVZmKVxJAkVKSioJS1ihFACsrMK4rAKuEZDUXtVSKcwG2EMURuhp910PVwWt6uw-m1evQdCZstDeN_n3jmpVe-g_NkmmySQbn3wbBvw8Qe901KULbGgd-iJooLsuSqqJI6Nkf9M0PwaV4W0rIMqVgiaIjZYOPMUD98xmC9bYmPdakU036qyZNk6gYRTHBbglhx_p_1ScX3ZQc</recordid><startdate>20171123</startdate><enddate>20171123</enddate><creator>Park, Juhong</creator><creator>Kim, Min Su</creator><creator>Cha, Eunho</creator><creator>Kim, Jeongyong</creator><creator>Choi, Wonbong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171123</creationdate><title>Synthesis of uniform single layer WS2 for tunable photoluminescence</title><author>Park, Juhong ; Kim, Min Su ; Cha, Eunho ; Kim, Jeongyong ; Choi, Wonbong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-78f86cc7669bab6b8ee91481b2e99ca991e09c700fbeec9785f67f899667ec373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/133</topic><topic>140/146</topic><topic>639/301/357/1018</topic><topic>639/925/357/1018</topic><topic>Chemical vapor deposition</topic><topic>Humanities and Social Sciences</topic><topic>Luminescence</topic><topic>multidisciplinary</topic><topic>Optical properties</topic><topic>Photons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thinning</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Juhong</creatorcontrib><creatorcontrib>Kim, Min Su</creatorcontrib><creatorcontrib>Cha, Eunho</creatorcontrib><creatorcontrib>Kim, Jeongyong</creatorcontrib><creatorcontrib>Choi, Wonbong</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Juhong</au><au>Kim, Min Su</au><au>Cha, Eunho</au><au>Kim, Jeongyong</au><au>Choi, Wonbong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of uniform single layer WS2 for tunable photoluminescence</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2017-11-23</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>16121</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Two-dimensional transition metal dichalcogenides (2D TMDs) have gained great interest due to their unique tunable bandgap as a function of the number of layers. Especially, single-layer tungsten disulfides (WS
2
) is a direct band gap semiconductor with a gap of 2.1 eV featuring strong photoluminescence and large exciton binding energy. Although synthesis of MoS
2
and their layer dependent properties have been studied rigorously, little attention has been paid to the formation of single-layer WS
2
and its layer dependent properties. Here we report the scalable synthesis of uniform single-layer WS
2
film by a two-step chemical vapor deposition (CVD) method followed by a laser thinning process. The PL intensity increases six-fold, while the PL peak shifts from 1.92 eV to 1.97 eV during the laser thinning from few-layers to single-layer. We find from the analysis of exciton complexes that both a neutral exciton and a trion increases with decreasing WS
2
film thickness; however, the neutral exciton is predominant in single-layer WS
2
. The binding energies of trion and biexciton for single-layer WS
2
are experimentally characterized at 35 meV and 60 meV, respectively. The tunable optical properties by precise control of WS
2
layers could empower a great deal of flexibility in designing atomically thin optoelectronic devices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29170514</pmid><doi>10.1038/s41598-017-16251-2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-11, Vol.7 (1), p.1-8, Article 16121 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5700996 |
source | NCBI_PubMed Central(免费); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/133 140/146 639/301/357/1018 639/925/357/1018 Chemical vapor deposition Humanities and Social Sciences Luminescence multidisciplinary Optical properties Photons Science Science (multidisciplinary) Thinning Tungsten |
title | Synthesis of uniform single layer WS2 for tunable photoluminescence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20uniform%20single%20layer%20WS2%20for%20tunable%20photoluminescence&rft.jtitle=Scientific%20reports&rft.au=Park,%20Juhong&rft.date=2017-11-23&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=16121&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-16251-2&rft_dat=%3Cproquest_pubme%3E1967846695%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-78f86cc7669bab6b8ee91481b2e99ca991e09c700fbeec9785f67f899667ec373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1967846695&rft_id=info:pmid/29170514&rfr_iscdi=true |