Loading…

Gradient nanocomposite hydrogels for interface tissue engineering

Abstract Two-dimensional (2D) nanomaterials are emerging class of materials with unique physical and chemical properties due to high surface area and disc-like shape. Recently, these 2D nanomaterials are investigated for a range of biomedical applications including tissue engineering, therapeutic de...

Full description

Saved in:
Bibliographic Details
Published in:Nanomedicine 2018-10, Vol.14 (7), p.2465-2474
Main Authors: Cross, Lauren M, Shah, Kunal, Palani, Sowmiya, Peak, Charles W, Gaharwar, Akhilesh K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-c98caf66f5eb62a2f39cf42f282de095ddb29b5944bcd917933392890f51bd5e3
cites cdi_FETCH-LOGICAL-c510t-c98caf66f5eb62a2f39cf42f282de095ddb29b5944bcd917933392890f51bd5e3
container_end_page 2474
container_issue 7
container_start_page 2465
container_title Nanomedicine
container_volume 14
creator Cross, Lauren M
Shah, Kunal
Palani, Sowmiya
Peak, Charles W
Gaharwar, Akhilesh K
description Abstract Two-dimensional (2D) nanomaterials are emerging class of materials with unique physical and chemical properties due to high surface area and disc-like shape. Recently, these 2D nanomaterials are investigated for a range of biomedical applications including tissue engineering, therapeutic delivery and bioimaging, due to their ability to physically reinforce polymeric networks. Here, we present a facile fabrication of a gradient scaffold with two natural polymers (gelatin methacryloyl (GelMA) and methacrylated kappa carrageenan (MκCA)) reinforced with 2D nanosilicates to mimic the native tissue interface. The addition of nanosilicates results in shear-thinning characteristics of prepolymer solution and increases the mechanical stiffness of crosslinked gradient structure. A gradient in mechanical properties, microstructures and cell adhesion characteristics was obtained using a microengineered flow channel. The gradient structure can be used to understand cell-matrix interactions and to design gradient scaffolds for mimicking tissue interfaces.
doi_str_mv 10.1016/j.nano.2017.02.022
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5702597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1549963417300874</els_id><sourcerecordid>28554596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-c98caf66f5eb62a2f39cf42f282de095ddb29b5944bcd917933392890f51bd5e3</originalsourceid><addsrcrecordid>eNp9kdtKAzEQhoMoHqov4IXsC7TmsNndgAgiWgXBC_U6ZJNJm7pNSrIV-vZmqRb1QhhIIPP9E75B6JzgCcGkulxMvPJhQjGpJ5jmonvomPBSjEVV0v3dnZVH6CSlBcasxlgcoiPacF5yUR2jm2lUxoHviyFLh-UqJNdDMd-YGGbQpcKGWDjfQ7RKQ9G7lNZQgJ85DxCdn52iA6u6BGdf5wi93d-93j6Mn56nj7c3T2PNCe7HWjRa2aqyHNqKKmqZ0LakljbUABbcmJaKlouybLURpBaMMUEbgS0nreHARuh6m7tat0swOv85qk6uoluquJFBOfn7xbu5nIUPyWtMuahzAN0G6BhSimB3LMFyECoXcpAgB6ES01w0Qxc_p-6Qb4O54WrbkF3Bh4Mok84-NRgXQffSBPd__vUfXHfOO626d9hAWoR19NmqJDJlQL4MKx02SmqGcVOX7BNfAZ6-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gradient nanocomposite hydrogels for interface tissue engineering</title><source>ScienceDirect Freedom Collection</source><creator>Cross, Lauren M ; Shah, Kunal ; Palani, Sowmiya ; Peak, Charles W ; Gaharwar, Akhilesh K</creator><creatorcontrib>Cross, Lauren M ; Shah, Kunal ; Palani, Sowmiya ; Peak, Charles W ; Gaharwar, Akhilesh K</creatorcontrib><description>Abstract Two-dimensional (2D) nanomaterials are emerging class of materials with unique physical and chemical properties due to high surface area and disc-like shape. Recently, these 2D nanomaterials are investigated for a range of biomedical applications including tissue engineering, therapeutic delivery and bioimaging, due to their ability to physically reinforce polymeric networks. Here, we present a facile fabrication of a gradient scaffold with two natural polymers (gelatin methacryloyl (GelMA) and methacrylated kappa carrageenan (MκCA)) reinforced with 2D nanosilicates to mimic the native tissue interface. The addition of nanosilicates results in shear-thinning characteristics of prepolymer solution and increases the mechanical stiffness of crosslinked gradient structure. A gradient in mechanical properties, microstructures and cell adhesion characteristics was obtained using a microengineered flow channel. The gradient structure can be used to understand cell-matrix interactions and to design gradient scaffolds for mimicking tissue interfaces.</description><identifier>ISSN: 1549-9634</identifier><identifier>EISSN: 1549-9642</identifier><identifier>DOI: 10.1016/j.nano.2017.02.022</identifier><identifier>PMID: 28554596</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Adhesion ; Cells, Cultured ; Gradient scaffold ; Humans ; Hydrogels ; Hydrogels - chemistry ; Internal Medicine ; Mesenchymal Stem Cells - cytology ; Nanocomposites ; Nanocomposites - chemistry ; Osteochondral (bone-cartilage) interface ; Polymers - chemistry ; Rheology ; Silicates - chemistry ; Tissue Engineering ; Tissue Scaffolds ; Two-dimensional (2D) nanomaterials</subject><ispartof>Nanomedicine, 2018-10, Vol.14 (7), p.2465-2474</ispartof><rights>Elsevier Inc.</rights><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-c98caf66f5eb62a2f39cf42f282de095ddb29b5944bcd917933392890f51bd5e3</citedby><cites>FETCH-LOGICAL-c510t-c98caf66f5eb62a2f39cf42f282de095ddb29b5944bcd917933392890f51bd5e3</cites><orcidid>0000-0002-0284-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28554596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cross, Lauren M</creatorcontrib><creatorcontrib>Shah, Kunal</creatorcontrib><creatorcontrib>Palani, Sowmiya</creatorcontrib><creatorcontrib>Peak, Charles W</creatorcontrib><creatorcontrib>Gaharwar, Akhilesh K</creatorcontrib><title>Gradient nanocomposite hydrogels for interface tissue engineering</title><title>Nanomedicine</title><addtitle>Nanomedicine</addtitle><description>Abstract Two-dimensional (2D) nanomaterials are emerging class of materials with unique physical and chemical properties due to high surface area and disc-like shape. Recently, these 2D nanomaterials are investigated for a range of biomedical applications including tissue engineering, therapeutic delivery and bioimaging, due to their ability to physically reinforce polymeric networks. Here, we present a facile fabrication of a gradient scaffold with two natural polymers (gelatin methacryloyl (GelMA) and methacrylated kappa carrageenan (MκCA)) reinforced with 2D nanosilicates to mimic the native tissue interface. The addition of nanosilicates results in shear-thinning characteristics of prepolymer solution and increases the mechanical stiffness of crosslinked gradient structure. A gradient in mechanical properties, microstructures and cell adhesion characteristics was obtained using a microengineered flow channel. The gradient structure can be used to understand cell-matrix interactions and to design gradient scaffolds for mimicking tissue interfaces.</description><subject>Cell Adhesion</subject><subject>Cells, Cultured</subject><subject>Gradient scaffold</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Internal Medicine</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Osteochondral (bone-cartilage) interface</subject><subject>Polymers - chemistry</subject><subject>Rheology</subject><subject>Silicates - chemistry</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Two-dimensional (2D) nanomaterials</subject><issn>1549-9634</issn><issn>1549-9642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kdtKAzEQhoMoHqov4IXsC7TmsNndgAgiWgXBC_U6ZJNJm7pNSrIV-vZmqRb1QhhIIPP9E75B6JzgCcGkulxMvPJhQjGpJ5jmonvomPBSjEVV0v3dnZVH6CSlBcasxlgcoiPacF5yUR2jm2lUxoHviyFLh-UqJNdDMd-YGGbQpcKGWDjfQ7RKQ9G7lNZQgJ85DxCdn52iA6u6BGdf5wi93d-93j6Mn56nj7c3T2PNCe7HWjRa2aqyHNqKKmqZ0LakljbUABbcmJaKlouybLURpBaMMUEbgS0nreHARuh6m7tat0swOv85qk6uoluquJFBOfn7xbu5nIUPyWtMuahzAN0G6BhSimB3LMFyECoXcpAgB6ES01w0Qxc_p-6Qb4O54WrbkF3Bh4Mok84-NRgXQffSBPd__vUfXHfOO626d9hAWoR19NmqJDJlQL4MKx02SmqGcVOX7BNfAZ6-</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Cross, Lauren M</creator><creator>Shah, Kunal</creator><creator>Palani, Sowmiya</creator><creator>Peak, Charles W</creator><creator>Gaharwar, Akhilesh K</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0284-0201</orcidid></search><sort><creationdate>20181001</creationdate><title>Gradient nanocomposite hydrogels for interface tissue engineering</title><author>Cross, Lauren M ; Shah, Kunal ; Palani, Sowmiya ; Peak, Charles W ; Gaharwar, Akhilesh K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-c98caf66f5eb62a2f39cf42f282de095ddb29b5944bcd917933392890f51bd5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cell Adhesion</topic><topic>Cells, Cultured</topic><topic>Gradient scaffold</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Internal Medicine</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Osteochondral (bone-cartilage) interface</topic><topic>Polymers - chemistry</topic><topic>Rheology</topic><topic>Silicates - chemistry</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Two-dimensional (2D) nanomaterials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cross, Lauren M</creatorcontrib><creatorcontrib>Shah, Kunal</creatorcontrib><creatorcontrib>Palani, Sowmiya</creatorcontrib><creatorcontrib>Peak, Charles W</creatorcontrib><creatorcontrib>Gaharwar, Akhilesh K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cross, Lauren M</au><au>Shah, Kunal</au><au>Palani, Sowmiya</au><au>Peak, Charles W</au><au>Gaharwar, Akhilesh K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient nanocomposite hydrogels for interface tissue engineering</atitle><jtitle>Nanomedicine</jtitle><addtitle>Nanomedicine</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>14</volume><issue>7</issue><spage>2465</spage><epage>2474</epage><pages>2465-2474</pages><issn>1549-9634</issn><eissn>1549-9642</eissn><abstract>Abstract Two-dimensional (2D) nanomaterials are emerging class of materials with unique physical and chemical properties due to high surface area and disc-like shape. Recently, these 2D nanomaterials are investigated for a range of biomedical applications including tissue engineering, therapeutic delivery and bioimaging, due to their ability to physically reinforce polymeric networks. Here, we present a facile fabrication of a gradient scaffold with two natural polymers (gelatin methacryloyl (GelMA) and methacrylated kappa carrageenan (MκCA)) reinforced with 2D nanosilicates to mimic the native tissue interface. The addition of nanosilicates results in shear-thinning characteristics of prepolymer solution and increases the mechanical stiffness of crosslinked gradient structure. A gradient in mechanical properties, microstructures and cell adhesion characteristics was obtained using a microengineered flow channel. The gradient structure can be used to understand cell-matrix interactions and to design gradient scaffolds for mimicking tissue interfaces.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28554596</pmid><doi>10.1016/j.nano.2017.02.022</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0284-0201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9634
ispartof Nanomedicine, 2018-10, Vol.14 (7), p.2465-2474
issn 1549-9634
1549-9642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5702597
source ScienceDirect Freedom Collection
subjects Cell Adhesion
Cells, Cultured
Gradient scaffold
Humans
Hydrogels
Hydrogels - chemistry
Internal Medicine
Mesenchymal Stem Cells - cytology
Nanocomposites
Nanocomposites - chemistry
Osteochondral (bone-cartilage) interface
Polymers - chemistry
Rheology
Silicates - chemistry
Tissue Engineering
Tissue Scaffolds
Two-dimensional (2D) nanomaterials
title Gradient nanocomposite hydrogels for interface tissue engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20nanocomposite%20hydrogels%20for%20interface%20tissue%20engineering&rft.jtitle=Nanomedicine&rft.au=Cross,%20Lauren%20M&rft.date=2018-10-01&rft.volume=14&rft.issue=7&rft.spage=2465&rft.epage=2474&rft.pages=2465-2474&rft.issn=1549-9634&rft.eissn=1549-9642&rft_id=info:doi/10.1016/j.nano.2017.02.022&rft_dat=%3Cpubmed_cross%3E28554596%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-c98caf66f5eb62a2f39cf42f282de095ddb29b5944bcd917933392890f51bd5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/28554596&rfr_iscdi=true