Loading…

Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways

This study aimed to explore the possible benefits of adrenomedullin (ADM) in preventing oxidative stress and inflammation by using an in vitro primary culture model of rat Leydig cells exposed to lipopolysaccharide (LPS). Cell proliferation was detected through CCK-8 and BrdU incorporation assays. R...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-11, Vol.7 (1), p.16479-15, Article 16479
Main Authors: Hu, Wei, Shi, Lei, Li, Ming-yong, Zhou, Pang-hu, Qiu, Bo, Yin, Ke, Zhang, Hui-hui, Gao, Yong, Kang, Ran, Qin, Song-lin, Ning, Jin-zhuo, Wang, Wei, Zhang, Li-jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-ac268de39ba1bbd750828837658a1f1c0358a71fc840f58d86fc8bedde9f6b523
cites cdi_FETCH-LOGICAL-c474t-ac268de39ba1bbd750828837658a1f1c0358a71fc840f58d86fc8bedde9f6b523
container_end_page 15
container_issue 1
container_start_page 16479
container_title Scientific reports
container_volume 7
creator Hu, Wei
Shi, Lei
Li, Ming-yong
Zhou, Pang-hu
Qiu, Bo
Yin, Ke
Zhang, Hui-hui
Gao, Yong
Kang, Ran
Qin, Song-lin
Ning, Jin-zhuo
Wang, Wei
Zhang, Li-jun
description This study aimed to explore the possible benefits of adrenomedullin (ADM) in preventing oxidative stress and inflammation by using an in vitro primary culture model of rat Leydig cells exposed to lipopolysaccharide (LPS). Cell proliferation was detected through CCK-8 and BrdU incorporation assays. ROS were determined with a DCFDA kit, and cytokine concentrations were measured with ELISA assay kits. Protein production was examined by immunohistochemical staining and Western blot, and gene expression was observed through RT-qPCR. Results revealed that ADM significantly reduced LPS-induced cytotoxicity, and pretreatment with ADM significantly suppressed ROS overproduction and decreased 4-HNE and 8-OHdG expression levels and concentrations. ADM pretreatment also significantly attenuated the overactivation of enzymatic antioxidants, namely, superoxide dismutase, catalase, thioredoxin reductase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. ADM supplementation reversed the significantly increased gene expression levels and concentrations of TNF-α, IL-1β, TGF-β1, MCP-1 and MIF. ADM pretreatment significantly inhibited the gene expression and protein production of TLR-2 and 4. Furthermore, ADM pretreatment markedly reduced the phosphorylation of JNK, ERK 1/2 and p38, phosphorylation and degradation of IκBα and nuclear translocation of p65. Our findings demonstrated that ADM protects Leydig cells from LPS-induced oxidative stress and inflammation, which might be associated with MAPK/NF-κB signalling pathways.
doi_str_mv 10.1038/s41598-017-16008-x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5705677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1969904629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ac268de39ba1bbd750828837658a1f1c0358a71fc840f58d86fc8bedde9f6b523</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEolXpC7BAltiwSWs7FzsbpKGigBguC1hbJ7aTcZXYwXaGyYvwMH0IngkPU6oBCW98pPOd_1z-LHtK8AXBBb8MJakanmPCclJjzPPdg-yU4rLKaUHpw6P4JDsP4QanV9GmJM3j7IQ2hJeY0dPsx0p5bd2o1TwMxqLJu6hlDGitF2V6JPUwBAQ9GBsiGszkJjcsAaTcgDdK58aqWWqF3M4oiGarUYheh1RjFTK2G2AcITq_IK9BRuMs2hpAH1af319-vM5_3r5CwfQW9t17NEHcfIclPMkedTAEfX73n2Vfr19_uXqbrz-9eXe1WueyZGXMQdKaK100LZC2VazCnHJesLriQDoicZECRjqZtu0qrnidwlYrpZuubitanGUvD7rT3KYbSG2jh0FM3ozgF-HAiL8z1mxE77aiYriqGUsCL-4EvPs26xDFaML-aGC1m4MgDcOU4ZLVCX3-D3rjZp8231N10-Cypk2i6IGS3oXgdXc_DMFi77w4OC-S8-K382KXip4dr3Ff8sfnBBQHIKSU7bU_6v1_2V_B179Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969904629</pqid></control><display><type>article</type><title>Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hu, Wei ; Shi, Lei ; Li, Ming-yong ; Zhou, Pang-hu ; Qiu, Bo ; Yin, Ke ; Zhang, Hui-hui ; Gao, Yong ; Kang, Ran ; Qin, Song-lin ; Ning, Jin-zhuo ; Wang, Wei ; Zhang, Li-jun</creator><creatorcontrib>Hu, Wei ; Shi, Lei ; Li, Ming-yong ; Zhou, Pang-hu ; Qiu, Bo ; Yin, Ke ; Zhang, Hui-hui ; Gao, Yong ; Kang, Ran ; Qin, Song-lin ; Ning, Jin-zhuo ; Wang, Wei ; Zhang, Li-jun</creatorcontrib><description>This study aimed to explore the possible benefits of adrenomedullin (ADM) in preventing oxidative stress and inflammation by using an in vitro primary culture model of rat Leydig cells exposed to lipopolysaccharide (LPS). Cell proliferation was detected through CCK-8 and BrdU incorporation assays. ROS were determined with a DCFDA kit, and cytokine concentrations were measured with ELISA assay kits. Protein production was examined by immunohistochemical staining and Western blot, and gene expression was observed through RT-qPCR. Results revealed that ADM significantly reduced LPS-induced cytotoxicity, and pretreatment with ADM significantly suppressed ROS overproduction and decreased 4-HNE and 8-OHdG expression levels and concentrations. ADM pretreatment also significantly attenuated the overactivation of enzymatic antioxidants, namely, superoxide dismutase, catalase, thioredoxin reductase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. ADM supplementation reversed the significantly increased gene expression levels and concentrations of TNF-α, IL-1β, TGF-β1, MCP-1 and MIF. ADM pretreatment significantly inhibited the gene expression and protein production of TLR-2 and 4. Furthermore, ADM pretreatment markedly reduced the phosphorylation of JNK, ERK 1/2 and p38, phosphorylation and degradation of IκBα and nuclear translocation of p65. Our findings demonstrated that ADM protects Leydig cells from LPS-induced oxidative stress and inflammation, which might be associated with MAPK/NF-κB signalling pathways.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-16008-x</identifier><identifier>PMID: 29184072</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/21 ; 13/51 ; 13/95 ; 631/337 ; 8-Hydroxydeoxyguanosine ; Adrenomedullin ; Antioxidants ; Catalase ; Cell culture ; Cell proliferation ; Cholecystokinin ; Cytotoxicity ; Enzyme-linked immunosorbent assay ; Gene expression ; Glutathione peroxidase ; Glutathione reductase ; Glutathione transferase ; Humanities and Social Sciences ; IL-1β ; Inflammation ; JNK protein ; Leydig cells ; Lipopolysaccharides ; MAP kinase ; Monocyte chemoattractant protein 1 ; multidisciplinary ; NF-κB protein ; Nuclear transport ; Oxidative stress ; Phosphorylation ; Rodents ; Science ; Science (multidisciplinary) ; Signal transduction ; Superoxide dismutase ; Transforming growth factor-b1 ; Translocation</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.16479-15, Article 16479</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ac268de39ba1bbd750828837658a1f1c0358a71fc840f58d86fc8bedde9f6b523</citedby><cites>FETCH-LOGICAL-c474t-ac268de39ba1bbd750828837658a1f1c0358a71fc840f58d86fc8bedde9f6b523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1969904629/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1969904629?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29184072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Li, Ming-yong</creatorcontrib><creatorcontrib>Zhou, Pang-hu</creatorcontrib><creatorcontrib>Qiu, Bo</creatorcontrib><creatorcontrib>Yin, Ke</creatorcontrib><creatorcontrib>Zhang, Hui-hui</creatorcontrib><creatorcontrib>Gao, Yong</creatorcontrib><creatorcontrib>Kang, Ran</creatorcontrib><creatorcontrib>Qin, Song-lin</creatorcontrib><creatorcontrib>Ning, Jin-zhuo</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Li-jun</creatorcontrib><title>Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This study aimed to explore the possible benefits of adrenomedullin (ADM) in preventing oxidative stress and inflammation by using an in vitro primary culture model of rat Leydig cells exposed to lipopolysaccharide (LPS). Cell proliferation was detected through CCK-8 and BrdU incorporation assays. ROS were determined with a DCFDA kit, and cytokine concentrations were measured with ELISA assay kits. Protein production was examined by immunohistochemical staining and Western blot, and gene expression was observed through RT-qPCR. Results revealed that ADM significantly reduced LPS-induced cytotoxicity, and pretreatment with ADM significantly suppressed ROS overproduction and decreased 4-HNE and 8-OHdG expression levels and concentrations. ADM pretreatment also significantly attenuated the overactivation of enzymatic antioxidants, namely, superoxide dismutase, catalase, thioredoxin reductase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. ADM supplementation reversed the significantly increased gene expression levels and concentrations of TNF-α, IL-1β, TGF-β1, MCP-1 and MIF. ADM pretreatment significantly inhibited the gene expression and protein production of TLR-2 and 4. Furthermore, ADM pretreatment markedly reduced the phosphorylation of JNK, ERK 1/2 and p38, phosphorylation and degradation of IκBα and nuclear translocation of p65. Our findings demonstrated that ADM protects Leydig cells from LPS-induced oxidative stress and inflammation, which might be associated with MAPK/NF-κB signalling pathways.</description><subject>13/1</subject><subject>13/21</subject><subject>13/51</subject><subject>13/95</subject><subject>631/337</subject><subject>8-Hydroxydeoxyguanosine</subject><subject>Adrenomedullin</subject><subject>Antioxidants</subject><subject>Catalase</subject><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>Cholecystokinin</subject><subject>Cytotoxicity</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Gene expression</subject><subject>Glutathione peroxidase</subject><subject>Glutathione reductase</subject><subject>Glutathione transferase</subject><subject>Humanities and Social Sciences</subject><subject>IL-1β</subject><subject>Inflammation</subject><subject>JNK protein</subject><subject>Leydig cells</subject><subject>Lipopolysaccharides</subject><subject>MAP kinase</subject><subject>Monocyte chemoattractant protein 1</subject><subject>multidisciplinary</subject><subject>NF-κB protein</subject><subject>Nuclear transport</subject><subject>Oxidative stress</subject><subject>Phosphorylation</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Superoxide dismutase</subject><subject>Transforming growth factor-b1</subject><subject>Translocation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kctu1DAUhiMEolXpC7BAltiwSWs7FzsbpKGigBguC1hbJ7aTcZXYwXaGyYvwMH0IngkPU6oBCW98pPOd_1z-LHtK8AXBBb8MJakanmPCclJjzPPdg-yU4rLKaUHpw6P4JDsP4QanV9GmJM3j7IQ2hJeY0dPsx0p5bd2o1TwMxqLJu6hlDGitF2V6JPUwBAQ9GBsiGszkJjcsAaTcgDdK58aqWWqF3M4oiGarUYheh1RjFTK2G2AcITq_IK9BRuMs2hpAH1af319-vM5_3r5CwfQW9t17NEHcfIclPMkedTAEfX73n2Vfr19_uXqbrz-9eXe1WueyZGXMQdKaK100LZC2VazCnHJesLriQDoicZECRjqZtu0qrnidwlYrpZuubitanGUvD7rT3KYbSG2jh0FM3ozgF-HAiL8z1mxE77aiYriqGUsCL-4EvPs26xDFaML-aGC1m4MgDcOU4ZLVCX3-D3rjZp8231N10-Cypk2i6IGS3oXgdXc_DMFi77w4OC-S8-K382KXip4dr3Ff8sfnBBQHIKSU7bU_6v1_2V_B179Y</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Hu, Wei</creator><creator>Shi, Lei</creator><creator>Li, Ming-yong</creator><creator>Zhou, Pang-hu</creator><creator>Qiu, Bo</creator><creator>Yin, Ke</creator><creator>Zhang, Hui-hui</creator><creator>Gao, Yong</creator><creator>Kang, Ran</creator><creator>Qin, Song-lin</creator><creator>Ning, Jin-zhuo</creator><creator>Wang, Wei</creator><creator>Zhang, Li-jun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171128</creationdate><title>Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways</title><author>Hu, Wei ; Shi, Lei ; Li, Ming-yong ; Zhou, Pang-hu ; Qiu, Bo ; Yin, Ke ; Zhang, Hui-hui ; Gao, Yong ; Kang, Ran ; Qin, Song-lin ; Ning, Jin-zhuo ; Wang, Wei ; Zhang, Li-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ac268de39ba1bbd750828837658a1f1c0358a71fc840f58d86fc8bedde9f6b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/1</topic><topic>13/21</topic><topic>13/51</topic><topic>13/95</topic><topic>631/337</topic><topic>8-Hydroxydeoxyguanosine</topic><topic>Adrenomedullin</topic><topic>Antioxidants</topic><topic>Catalase</topic><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>Cholecystokinin</topic><topic>Cytotoxicity</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Gene expression</topic><topic>Glutathione peroxidase</topic><topic>Glutathione reductase</topic><topic>Glutathione transferase</topic><topic>Humanities and Social Sciences</topic><topic>IL-1β</topic><topic>Inflammation</topic><topic>JNK protein</topic><topic>Leydig cells</topic><topic>Lipopolysaccharides</topic><topic>MAP kinase</topic><topic>Monocyte chemoattractant protein 1</topic><topic>multidisciplinary</topic><topic>NF-κB protein</topic><topic>Nuclear transport</topic><topic>Oxidative stress</topic><topic>Phosphorylation</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Superoxide dismutase</topic><topic>Transforming growth factor-b1</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Li, Ming-yong</creatorcontrib><creatorcontrib>Zhou, Pang-hu</creatorcontrib><creatorcontrib>Qiu, Bo</creatorcontrib><creatorcontrib>Yin, Ke</creatorcontrib><creatorcontrib>Zhang, Hui-hui</creatorcontrib><creatorcontrib>Gao, Yong</creatorcontrib><creatorcontrib>Kang, Ran</creatorcontrib><creatorcontrib>Qin, Song-lin</creatorcontrib><creatorcontrib>Ning, Jin-zhuo</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Li-jun</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Wei</au><au>Shi, Lei</au><au>Li, Ming-yong</au><au>Zhou, Pang-hu</au><au>Qiu, Bo</au><au>Yin, Ke</au><au>Zhang, Hui-hui</au><au>Gao, Yong</au><au>Kang, Ran</au><au>Qin, Song-lin</au><au>Ning, Jin-zhuo</au><au>Wang, Wei</au><au>Zhang, Li-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-28</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>16479</spage><epage>15</epage><pages>16479-15</pages><artnum>16479</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This study aimed to explore the possible benefits of adrenomedullin (ADM) in preventing oxidative stress and inflammation by using an in vitro primary culture model of rat Leydig cells exposed to lipopolysaccharide (LPS). Cell proliferation was detected through CCK-8 and BrdU incorporation assays. ROS were determined with a DCFDA kit, and cytokine concentrations were measured with ELISA assay kits. Protein production was examined by immunohistochemical staining and Western blot, and gene expression was observed through RT-qPCR. Results revealed that ADM significantly reduced LPS-induced cytotoxicity, and pretreatment with ADM significantly suppressed ROS overproduction and decreased 4-HNE and 8-OHdG expression levels and concentrations. ADM pretreatment also significantly attenuated the overactivation of enzymatic antioxidants, namely, superoxide dismutase, catalase, thioredoxin reductase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. ADM supplementation reversed the significantly increased gene expression levels and concentrations of TNF-α, IL-1β, TGF-β1, MCP-1 and MIF. ADM pretreatment significantly inhibited the gene expression and protein production of TLR-2 and 4. Furthermore, ADM pretreatment markedly reduced the phosphorylation of JNK, ERK 1/2 and p38, phosphorylation and degradation of IκBα and nuclear translocation of p65. Our findings demonstrated that ADM protects Leydig cells from LPS-induced oxidative stress and inflammation, which might be associated with MAPK/NF-κB signalling pathways.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29184072</pmid><doi>10.1038/s41598-017-16008-x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-11, Vol.7 (1), p.16479-15, Article 16479
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5705677
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/21
13/51
13/95
631/337
8-Hydroxydeoxyguanosine
Adrenomedullin
Antioxidants
Catalase
Cell culture
Cell proliferation
Cholecystokinin
Cytotoxicity
Enzyme-linked immunosorbent assay
Gene expression
Glutathione peroxidase
Glutathione reductase
Glutathione transferase
Humanities and Social Sciences
IL-1β
Inflammation
JNK protein
Leydig cells
Lipopolysaccharides
MAP kinase
Monocyte chemoattractant protein 1
multidisciplinary
NF-κB protein
Nuclear transport
Oxidative stress
Phosphorylation
Rodents
Science
Science (multidisciplinary)
Signal transduction
Superoxide dismutase
Transforming growth factor-b1
Translocation
title Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adrenomedullin%20protects%20Leydig%20cells%20against%20lipopolysaccharide-induced%20oxidative%20stress%20and%20inflammatory%20reaction%20via%20MAPK/NF-%CE%BAB%20signalling%20pathways&rft.jtitle=Scientific%20reports&rft.au=Hu,%20Wei&rft.date=2017-11-28&rft.volume=7&rft.issue=1&rft.spage=16479&rft.epage=15&rft.pages=16479-15&rft.artnum=16479&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-16008-x&rft_dat=%3Cproquest_pubme%3E1969904629%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-ac268de39ba1bbd750828837658a1f1c0358a71fc840f58d86fc8bedde9f6b523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1969904629&rft_id=info:pmid/29184072&rfr_iscdi=true