Loading…

Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production

Thraustochytrids isolated from hot tropical and sub-tropical waters have been well studied for DHA and biodiesel production in the last decades. However, little research has been performed on the oils of cold water thraustochytrids, in particular from the North Sea region. In this study, thraustochy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied phycology 2017-12, Vol.29 (6), p.2831-2843
Main Authors: Marchan, Loris Fossier, Lee Chang, Kim J., Nichols, Peter D., Polglase, Jane L., Mitchell, Wilfrid J., Gutierrez, Tony
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thraustochytrids isolated from hot tropical and sub-tropical waters have been well studied for DHA and biodiesel production in the last decades. However, little research has been performed on the oils of cold water thraustochytrids, in particular from the North Sea region. In this study, thraustochytrid strains from British waters showed high relative levels of omega-3 long-chain (≥C 20 ) polyunsaturated fatty acids (LC-PUFA), including docosahexaenoic acid (DHA, 22:6ω3). The relative levels of DHA (as % of total fatty acids, TFA) in the different British strains are hitherto amongst the highest recorded from any thraustochytrid screening study, with strain TL18 reaching up to 67% DHA in modified Glucose-Yeast Extract-Peptone (GYP) medium. At this screening stage, low final biomass and fatty acid yield were observed in modified GYP and MarChiquita-Brain Heart Broth (MCBHB), while PUFA profiles (as % of PUFA) remained unaltered regardless of the culture medium used. Hence, optimizing the medium and culture conditions to improve growth and lipid content, without impacting the relative percentage of DHA, has the potential to increase the final DHA concentration. With this in mind, three strains were identified as promising organisms for the production of DHA. In the context of possible future industrial exploitation involving a winterization step, we investigated the recycling of the residual oil for biodiesel use. To do this, a mathematical model was used to assess the intrinsic properties of the by-product oil. The results showed the feasibility of producing primary DHA-rich oil, assuming optimized conditions, while using the by-product oil for biodiesel use.
ISSN:0921-8971
1573-5176
DOI:10.1007/s10811-017-1149-8