Loading…

3-Sulfogalactosyl–dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity

Bacterial adhesion to host receptors is an early and essential step in bacterial colonization, and the nature of adhesin–receptor interactions determines bacterial localization and thus the outcome of these interactions. Here, we determined the host receptors for the multivalent adhesion molecule (M...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2017-12, Vol.292 (48), p.19792-19803
Main Authors: Al-Saedi, Fitua, Vaz, Diana Pereira, Stones, Daniel H., Krachler, Anne Marie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-a8110d372ec1420a411af098b80f0abfa2e865c03ee095c638e11ef57fef48963
cites cdi_FETCH-LOGICAL-c443t-a8110d372ec1420a411af098b80f0abfa2e865c03ee095c638e11ef57fef48963
container_end_page 19803
container_issue 48
container_start_page 19792
container_title The Journal of biological chemistry
container_volume 292
creator Al-Saedi, Fitua
Vaz, Diana Pereira
Stones, Daniel H.
Krachler, Anne Marie
description Bacterial adhesion to host receptors is an early and essential step in bacterial colonization, and the nature of adhesin–receptor interactions determines bacterial localization and thus the outcome of these interactions. Here, we determined the host receptors for the multivalent adhesion molecule (MAM) from the gut commensal Escherichia coli HS (MAMHS), which contains an array of seven mammalian cell entry domains. The MAMHS adhesin interacted with a range of host receptors, through recognition of a shared 3-O-sulfogalactosyl moiety. This functional group is also found in mucin, a component of the intestinal mucus layer and thus one of the prime adherence targets for commensal E. coli. Mucin gels impeded the motility of E. coli by acting as a physical barrier, and the barrier effect was enhanced by specific interactions between mucin and MAMHS in a sulfation-dependent manner. Desulfation of mucin by pure sulfatase or the sulfatase-producing commensal Bacteroides thetaiotaomicron decreased binding of E. coli to mucin and increased the attachment of bacteria to the epithelial surface via interactions with surface-localized sulfated lipid and protein receptors. Together, our results demonstrate that the E. coli adhesin MAMHS facilitates retention of a gut commensal by attachment to mucin. They further suggest that the amount of sulfatase secreted by mucin-foraging bacteria such as B. thetaiotaomicron, inhabiting the same niche, may affect the capacity of the mucus barrier to retain commensal E. coli.
doi_str_mv 10.1074/jbc.M117.817908
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5712619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582032874X</els_id><sourcerecordid>1948753690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a8110d372ec1420a411af098b80f0abfa2e865c03ee095c638e11ef57fef48963</originalsourceid><addsrcrecordid>eNp1kb1uFDEURi0EIkugpkMuaWbjO792g4SiQJCCKAISnXXHc5115BkvY89KW4V34A3zJHG0ISIFblz4-Puu7mHsLYg1iK4-ue7N-itAt5bQKSGfsRUIWRVVAz-fs5UQJRSqbOQRexXjtcinVvCSHZVSyVJ13YrdVMXl4m24Qo8mhbj3t7__DLSlaaApcRw2FF2YeLD8LJoNzc5sHHITvOPnl3xcfHI79E_YMXgyiyfuIseUaFow0cD7PY-5ChNG4rnM7Vzav2YvLPpIbx7uY_bj09n30_Pi4tvnL6cfLwpT11UqUAKIoepKMlCXAmsAtELJXgorsLdYkmwbIyoioRrTVpIAyDadJVtL1VbH7MMhd7v0Iw0mDzyj19vZjTjvdUCnn75MbqOvwk43HZQtqBzw_iFgDr8WikmPLhryHicKS9Sgatk1VatERk8OqJlDjDPZxxoQ-l6bztr0vTZ90JZ_vPt3ukf-r6cMqANAeUc7R7OOxtFkaHAzmaSH4P4bfgcaAKwh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948753690</pqid></control><display><type>article</type><title>3-Sulfogalactosyl–dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Al-Saedi, Fitua ; Vaz, Diana Pereira ; Stones, Daniel H. ; Krachler, Anne Marie</creator><creatorcontrib>Al-Saedi, Fitua ; Vaz, Diana Pereira ; Stones, Daniel H. ; Krachler, Anne Marie</creatorcontrib><description>Bacterial adhesion to host receptors is an early and essential step in bacterial colonization, and the nature of adhesin–receptor interactions determines bacterial localization and thus the outcome of these interactions. Here, we determined the host receptors for the multivalent adhesion molecule (MAM) from the gut commensal Escherichia coli HS (MAMHS), which contains an array of seven mammalian cell entry domains. The MAMHS adhesin interacted with a range of host receptors, through recognition of a shared 3-O-sulfogalactosyl moiety. This functional group is also found in mucin, a component of the intestinal mucus layer and thus one of the prime adherence targets for commensal E. coli. Mucin gels impeded the motility of E. coli by acting as a physical barrier, and the barrier effect was enhanced by specific interactions between mucin and MAMHS in a sulfation-dependent manner. Desulfation of mucin by pure sulfatase or the sulfatase-producing commensal Bacteroides thetaiotaomicron decreased binding of E. coli to mucin and increased the attachment of bacteria to the epithelial surface via interactions with surface-localized sulfated lipid and protein receptors. Together, our results demonstrate that the E. coli adhesin MAMHS facilitates retention of a gut commensal by attachment to mucin. They further suggest that the amount of sulfatase secreted by mucin-foraging bacteria such as B. thetaiotaomicron, inhabiting the same niche, may affect the capacity of the mucus barrier to retain commensal E. coli.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.817908</identifier><identifier>PMID: 28982977</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adhesin ; Bacterial Adhesion ; Cell Adhesion Molecules - metabolism ; commensal ; Escherichia coli - enzymology ; Escherichia coli - physiology ; Escherichia coli Proteins - metabolism ; foraging ; Galactose - metabolism ; intestinal epithelium ; mammalian cell entry domain ; Microbiology ; mucin ; Mucins - metabolism ; mucus ; Multivalent Adhesion Molecule ; protein-lipid interaction ; Sulfatases - metabolism ; Vibrio parahaemolyticus - physiology</subject><ispartof>The Journal of biological chemistry, 2017-12, Vol.292 (48), p.19792-19803</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a8110d372ec1420a411af098b80f0abfa2e865c03ee095c638e11ef57fef48963</citedby><cites>FETCH-LOGICAL-c443t-a8110d372ec1420a411af098b80f0abfa2e865c03ee095c638e11ef57fef48963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712619/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002192582032874X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28982977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Saedi, Fitua</creatorcontrib><creatorcontrib>Vaz, Diana Pereira</creatorcontrib><creatorcontrib>Stones, Daniel H.</creatorcontrib><creatorcontrib>Krachler, Anne Marie</creatorcontrib><title>3-Sulfogalactosyl–dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Bacterial adhesion to host receptors is an early and essential step in bacterial colonization, and the nature of adhesin–receptor interactions determines bacterial localization and thus the outcome of these interactions. Here, we determined the host receptors for the multivalent adhesion molecule (MAM) from the gut commensal Escherichia coli HS (MAMHS), which contains an array of seven mammalian cell entry domains. The MAMHS adhesin interacted with a range of host receptors, through recognition of a shared 3-O-sulfogalactosyl moiety. This functional group is also found in mucin, a component of the intestinal mucus layer and thus one of the prime adherence targets for commensal E. coli. Mucin gels impeded the motility of E. coli by acting as a physical barrier, and the barrier effect was enhanced by specific interactions between mucin and MAMHS in a sulfation-dependent manner. Desulfation of mucin by pure sulfatase or the sulfatase-producing commensal Bacteroides thetaiotaomicron decreased binding of E. coli to mucin and increased the attachment of bacteria to the epithelial surface via interactions with surface-localized sulfated lipid and protein receptors. Together, our results demonstrate that the E. coli adhesin MAMHS facilitates retention of a gut commensal by attachment to mucin. They further suggest that the amount of sulfatase secreted by mucin-foraging bacteria such as B. thetaiotaomicron, inhabiting the same niche, may affect the capacity of the mucus barrier to retain commensal E. coli.</description><subject>adhesin</subject><subject>Bacterial Adhesion</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>commensal</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>foraging</subject><subject>Galactose - metabolism</subject><subject>intestinal epithelium</subject><subject>mammalian cell entry domain</subject><subject>Microbiology</subject><subject>mucin</subject><subject>Mucins - metabolism</subject><subject>mucus</subject><subject>Multivalent Adhesion Molecule</subject><subject>protein-lipid interaction</subject><subject>Sulfatases - metabolism</subject><subject>Vibrio parahaemolyticus - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kb1uFDEURi0EIkugpkMuaWbjO792g4SiQJCCKAISnXXHc5115BkvY89KW4V34A3zJHG0ISIFblz4-Puu7mHsLYg1iK4-ue7N-itAt5bQKSGfsRUIWRVVAz-fs5UQJRSqbOQRexXjtcinVvCSHZVSyVJ13YrdVMXl4m24Qo8mhbj3t7__DLSlaaApcRw2FF2YeLD8LJoNzc5sHHITvOPnl3xcfHI79E_YMXgyiyfuIseUaFow0cD7PY-5ChNG4rnM7Vzav2YvLPpIbx7uY_bj09n30_Pi4tvnL6cfLwpT11UqUAKIoepKMlCXAmsAtELJXgorsLdYkmwbIyoioRrTVpIAyDadJVtL1VbH7MMhd7v0Iw0mDzyj19vZjTjvdUCnn75MbqOvwk43HZQtqBzw_iFgDr8WikmPLhryHicKS9Sgatk1VatERk8OqJlDjDPZxxoQ-l6bztr0vTZ90JZ_vPt3ukf-r6cMqANAeUc7R7OOxtFkaHAzmaSH4P4bfgcaAKwh</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Al-Saedi, Fitua</creator><creator>Vaz, Diana Pereira</creator><creator>Stones, Daniel H.</creator><creator>Krachler, Anne Marie</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171201</creationdate><title>3-Sulfogalactosyl–dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity</title><author>Al-Saedi, Fitua ; Vaz, Diana Pereira ; Stones, Daniel H. ; Krachler, Anne Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a8110d372ec1420a411af098b80f0abfa2e865c03ee095c638e11ef57fef48963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>adhesin</topic><topic>Bacterial Adhesion</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>commensal</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>foraging</topic><topic>Galactose - metabolism</topic><topic>intestinal epithelium</topic><topic>mammalian cell entry domain</topic><topic>Microbiology</topic><topic>mucin</topic><topic>Mucins - metabolism</topic><topic>mucus</topic><topic>Multivalent Adhesion Molecule</topic><topic>protein-lipid interaction</topic><topic>Sulfatases - metabolism</topic><topic>Vibrio parahaemolyticus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Saedi, Fitua</creatorcontrib><creatorcontrib>Vaz, Diana Pereira</creatorcontrib><creatorcontrib>Stones, Daniel H.</creatorcontrib><creatorcontrib>Krachler, Anne Marie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Saedi, Fitua</au><au>Vaz, Diana Pereira</au><au>Stones, Daniel H.</au><au>Krachler, Anne Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-Sulfogalactosyl–dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>292</volume><issue>48</issue><spage>19792</spage><epage>19803</epage><pages>19792-19803</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Bacterial adhesion to host receptors is an early and essential step in bacterial colonization, and the nature of adhesin–receptor interactions determines bacterial localization and thus the outcome of these interactions. Here, we determined the host receptors for the multivalent adhesion molecule (MAM) from the gut commensal Escherichia coli HS (MAMHS), which contains an array of seven mammalian cell entry domains. The MAMHS adhesin interacted with a range of host receptors, through recognition of a shared 3-O-sulfogalactosyl moiety. This functional group is also found in mucin, a component of the intestinal mucus layer and thus one of the prime adherence targets for commensal E. coli. Mucin gels impeded the motility of E. coli by acting as a physical barrier, and the barrier effect was enhanced by specific interactions between mucin and MAMHS in a sulfation-dependent manner. Desulfation of mucin by pure sulfatase or the sulfatase-producing commensal Bacteroides thetaiotaomicron decreased binding of E. coli to mucin and increased the attachment of bacteria to the epithelial surface via interactions with surface-localized sulfated lipid and protein receptors. Together, our results demonstrate that the E. coli adhesin MAMHS facilitates retention of a gut commensal by attachment to mucin. They further suggest that the amount of sulfatase secreted by mucin-foraging bacteria such as B. thetaiotaomicron, inhabiting the same niche, may affect the capacity of the mucus barrier to retain commensal E. coli.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28982977</pmid><doi>10.1074/jbc.M117.817908</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-12, Vol.292 (48), p.19792-19803
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5712619
source Open Access: PubMed Central; ScienceDirect Journals
subjects adhesin
Bacterial Adhesion
Cell Adhesion Molecules - metabolism
commensal
Escherichia coli - enzymology
Escherichia coli - physiology
Escherichia coli Proteins - metabolism
foraging
Galactose - metabolism
intestinal epithelium
mammalian cell entry domain
Microbiology
mucin
Mucins - metabolism
mucus
Multivalent Adhesion Molecule
protein-lipid interaction
Sulfatases - metabolism
Vibrio parahaemolyticus - physiology
title 3-Sulfogalactosyl–dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-Sulfogalactosyl%E2%80%93dependent%20adhesion%20of%20Escherichia%20coli%20HS%20multivalent%20adhesion%20molecule%20is%20attenuated%20by%20sulfatase%20activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Al-Saedi,%20Fitua&rft.date=2017-12-01&rft.volume=292&rft.issue=48&rft.spage=19792&rft.epage=19803&rft.pages=19792-19803&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.817908&rft_dat=%3Cproquest_pubme%3E1948753690%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-a8110d372ec1420a411af098b80f0abfa2e865c03ee095c638e11ef57fef48963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1948753690&rft_id=info:pmid/28982977&rfr_iscdi=true