Loading…

The prospect of carbon fiber implants in radiotherapy

Because of their superior characteristics, carbonaceous materials, which are still at their early stage of development, have garnered significant interest. Because of their low atomic number, carbonaceous orthopedic implants possess radiation properties similar to biological tissues and, therefore,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied clinical medical physics 2012-07, Vol.13 (4), p.152-159
Main Authors: Xin‐ye, Ni, Xiao‐bin, Tang, Chang‐ran, Geng, Da, Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because of their superior characteristics, carbonaceous materials, which are still at their early stage of development, have garnered significant interest. Because of their low atomic number, carbonaceous orthopedic implants possess radiation properties similar to biological tissues and, therefore, they are more suitable to patients in need of radiotherapy. The effects of stainless steel, titanium, and carbon plates on radiation dose distributions were investigated in this work using Monte Carlo simulations and TLD measurements for 6 MV photon beams. It is found that carbon plates will neither increase the incident surface dose, nor lead to the decrease of exit surface dose (the effect of a second build‐up). Carbon fiber orthopedic implants have a good prospect for radiotherapy patients because they have minimal perturbation effects on the radiotherapy dose distribution. PACS number: 87.55.K‐,87.55.Gh, 87.55.ne
ISSN:1526-9914
1526-9914
DOI:10.1120/jacmp.v13i4.3821