Loading…
Particle size distribution predicts particulate phosphorus removal
Particulate phosphorus (PP) is often the largest component of the total phosphorus (P) load in stormwater. Fine-resolution measurement of particle sizes allows us to investigate the mechanisms behind the removal of PP in stormwater wetlands, since the diameter of particles influences the settling ve...
Saved in:
Published in: | Ambio 2018-01, Vol.47 (Suppl 1), p.S124-S133 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Particulate phosphorus (PP) is often the largest component of the total phosphorus (P) load in stormwater. Fine-resolution measurement of particle sizes allows us to investigate the mechanisms behind the removal of PP in stormwater wetlands, since the diameter of particles influences the settling velocity and the amount of sorbed P on a particle. In this paper, we present a novel method to estimate PP, where we measure and count individual particles in stormwater and use the total surface area as a proxy for PP. Our results show a strong relationship between total particle surface area and PP, which we use to put forth a simple mechanistic model of PP removal via gravitational settling of individual mineral particles, based on a continuous particle size distribution. This information can help improve the design of stormwater Best management practices to reduce PP loading in both urban and agricultural watersheds. |
---|---|
ISSN: | 0044-7447 1654-7209 |
DOI: | 10.1007/s13280-017-0981-z |