Loading…

A retinal code for motion along the gravitational and body axes

Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSG...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2017-06, Vol.546 (7659), p.492-497
Main Authors: Sabbah, Shai, Gemmer, John A., Bhatia-Lin, Ananya, Manoff, Gabrielle, Castro, Gabriel, Siegel, Jesse K., Jeffery, Nathan, Berson, David M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923
cites cdi_FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923
container_end_page 497
container_issue 7659
container_start_page 492
container_title Nature (London)
container_volume 546
creator Sabbah, Shai
Gemmer, John A.
Bhatia-Lin, Ananya
Manoff, Gabrielle
Castro, Gabriel
Siegel, Jesse K.
Jeffery, Nathan
Berson, David M.
description Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas in vitro . Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ. Global mapping shows that mouse retinal neurons prefer visual motion produced when the animal moves along two behaviourally relevant axes, allowing the encoding of the animal’s every translation and rotation. All eyes on motion encoding The local wiring that allows some retinal neurons to detect motion direction in visual stimuli has been well studied, but how their ensemble encodes optic flow more generally has not. Now David Berson and colleagues have performed a global mapping of direction preferences in mouse direction-sensitive ganglion cells (DSGCs) and show that they align with just two ethologically relevant axes: the body axis and the gravitational axis. Relative activation of the sixteen resulting channels, that is four cardinal directions multiplied by two DSGC types (ON vs ON-OFF) for two eyes, allows for the unique encoding of every translation and rotation associated with the animal's self-motion. This creates a visual feedback that complements the bio-mechanical vestibular system in controlling image stabilization and balance.
doi_str_mv 10.1038/nature22818
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5729591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A496332628</galeid><sourcerecordid>A496332628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923</originalsourceid><addsrcrecordid>eNqNk0tr3DAQgE1paTZpT70X015aWqcj2ZbkS8sS-ggECn2chVYeOQpeaSPZIfn30bJp8ILbBh0Emm--GcRMlr0gcEygFB-cGsaAlAoiHmULUnFWVEzwx9kCgIoCRMkOssMYLwCgJrx6mh1QwYBXgi2yT8s84GCd6nPtW8yND_naD9a7XPXedflwjnkX1JUd1PY1ccq1-cq3N7m6xvgse2JUH_H53X2U_f7y-dfJt-Ls-9fTk-VZoUUthoK3qFXFVwCiMmCIIVwpqKAFwYRGUJQhkJqCMQwF1a1KDaJhLTN1TRtaHmUfd97NuFpjq9ENQfVyE-xahRvplZX7EWfPZeevZM1pUzckCd7cCYK_HDEOcm2jxr5XDv0YJWkglQHeVAl9vUM71aO0zvhk1FtcLhkDyoED-ydVNawsKaMiUcUM1aHDsP1fNDY971kfwk_9r2Z4vbGXcir9KzQ1Hc9A6bS4tnq21QclTCu83UtIzIDXQ6fGGOXpzx_78v-xU--7HauDjzGguR8LAnK7InKyIol-OZ2ke_bPTiTg_Q6IKeQ6DPLCjyFNfpz13QKyGxTC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909230794</pqid></control><display><type>article</type><title>A retinal code for motion along the gravitational and body axes</title><source>Nature</source><creator>Sabbah, Shai ; Gemmer, John A. ; Bhatia-Lin, Ananya ; Manoff, Gabrielle ; Castro, Gabriel ; Siegel, Jesse K. ; Jeffery, Nathan ; Berson, David M.</creator><creatorcontrib>Sabbah, Shai ; Gemmer, John A. ; Bhatia-Lin, Ananya ; Manoff, Gabrielle ; Castro, Gabriel ; Siegel, Jesse K. ; Jeffery, Nathan ; Berson, David M.</creatorcontrib><description>Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas in vitro . Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ. Global mapping shows that mouse retinal neurons prefer visual motion produced when the animal moves along two behaviourally relevant axes, allowing the encoding of the animal’s every translation and rotation. All eyes on motion encoding The local wiring that allows some retinal neurons to detect motion direction in visual stimuli has been well studied, but how their ensemble encodes optic flow more generally has not. Now David Berson and colleagues have performed a global mapping of direction preferences in mouse direction-sensitive ganglion cells (DSGCs) and show that they align with just two ethologically relevant axes: the body axis and the gravitational axis. Relative activation of the sixteen resulting channels, that is four cardinal directions multiplied by two DSGC types (ON vs ON-OFF) for two eyes, allows for the unique encoding of every translation and rotation associated with the animal's self-motion. This creates a visual feedback that complements the bio-mechanical vestibular system in controlling image stabilization and balance.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature22818</identifier><identifier>PMID: 28607486</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/44 ; 14/19 ; 14/34 ; 14/35 ; 14/69 ; 631/378/2613/1483 ; 631/378/2613/1786 ; 631/378/2617/1780 ; 631/378/2629/1779 ; 631/378/3917 ; 64/60 ; 9/74 ; Animals ; Female ; Gravitation ; Humanities and Social Sciences ; Male ; Mice ; Motion perception (Vision) ; Movement (Physiology) ; multidisciplinary ; Neurons ; Observations ; Ocular Physiological Phenomena ; Optic Flow - physiology ; Physiological aspects ; Physiological research ; Postural Balance - physiology ; Retina ; Retinal Ganglion Cells - physiology ; Rotation ; Science ; Space Perception - physiology ; Vestibule, Labyrinth - physiology ; Visual pathways</subject><ispartof>Nature (London), 2017-06, Vol.546 (7659), p.492-497</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923</citedby><cites>FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28607486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabbah, Shai</creatorcontrib><creatorcontrib>Gemmer, John A.</creatorcontrib><creatorcontrib>Bhatia-Lin, Ananya</creatorcontrib><creatorcontrib>Manoff, Gabrielle</creatorcontrib><creatorcontrib>Castro, Gabriel</creatorcontrib><creatorcontrib>Siegel, Jesse K.</creatorcontrib><creatorcontrib>Jeffery, Nathan</creatorcontrib><creatorcontrib>Berson, David M.</creatorcontrib><title>A retinal code for motion along the gravitational and body axes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas in vitro . Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ. Global mapping shows that mouse retinal neurons prefer visual motion produced when the animal moves along two behaviourally relevant axes, allowing the encoding of the animal’s every translation and rotation. All eyes on motion encoding The local wiring that allows some retinal neurons to detect motion direction in visual stimuli has been well studied, but how their ensemble encodes optic flow more generally has not. Now David Berson and colleagues have performed a global mapping of direction preferences in mouse direction-sensitive ganglion cells (DSGCs) and show that they align with just two ethologically relevant axes: the body axis and the gravitational axis. Relative activation of the sixteen resulting channels, that is four cardinal directions multiplied by two DSGC types (ON vs ON-OFF) for two eyes, allows for the unique encoding of every translation and rotation associated with the animal's self-motion. This creates a visual feedback that complements the bio-mechanical vestibular system in controlling image stabilization and balance.</description><subject>13/1</subject><subject>13/44</subject><subject>14/19</subject><subject>14/34</subject><subject>14/35</subject><subject>14/69</subject><subject>631/378/2613/1483</subject><subject>631/378/2613/1786</subject><subject>631/378/2617/1780</subject><subject>631/378/2629/1779</subject><subject>631/378/3917</subject><subject>64/60</subject><subject>9/74</subject><subject>Animals</subject><subject>Female</subject><subject>Gravitation</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Motion perception (Vision)</subject><subject>Movement (Physiology)</subject><subject>multidisciplinary</subject><subject>Neurons</subject><subject>Observations</subject><subject>Ocular Physiological Phenomena</subject><subject>Optic Flow - physiology</subject><subject>Physiological aspects</subject><subject>Physiological research</subject><subject>Postural Balance - physiology</subject><subject>Retina</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Rotation</subject><subject>Science</subject><subject>Space Perception - physiology</subject><subject>Vestibule, Labyrinth - physiology</subject><subject>Visual pathways</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNk0tr3DAQgE1paTZpT70X015aWqcj2ZbkS8sS-ggECn2chVYeOQpeaSPZIfn30bJp8ILbBh0Emm--GcRMlr0gcEygFB-cGsaAlAoiHmULUnFWVEzwx9kCgIoCRMkOssMYLwCgJrx6mh1QwYBXgi2yT8s84GCd6nPtW8yND_naD9a7XPXedflwjnkX1JUd1PY1ccq1-cq3N7m6xvgse2JUH_H53X2U_f7y-dfJt-Ls-9fTk-VZoUUthoK3qFXFVwCiMmCIIVwpqKAFwYRGUJQhkJqCMQwF1a1KDaJhLTN1TRtaHmUfd97NuFpjq9ENQfVyE-xahRvplZX7EWfPZeevZM1pUzckCd7cCYK_HDEOcm2jxr5XDv0YJWkglQHeVAl9vUM71aO0zvhk1FtcLhkDyoED-ydVNawsKaMiUcUM1aHDsP1fNDY971kfwk_9r2Z4vbGXcir9KzQ1Hc9A6bS4tnq21QclTCu83UtIzIDXQ6fGGOXpzx_78v-xU--7HauDjzGguR8LAnK7InKyIol-OZ2ke_bPTiTg_Q6IKeQ6DPLCjyFNfpz13QKyGxTC</recordid><startdate>20170622</startdate><enddate>20170622</enddate><creator>Sabbah, Shai</creator><creator>Gemmer, John A.</creator><creator>Bhatia-Lin, Ananya</creator><creator>Manoff, Gabrielle</creator><creator>Castro, Gabriel</creator><creator>Siegel, Jesse K.</creator><creator>Jeffery, Nathan</creator><creator>Berson, David M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170622</creationdate><title>A retinal code for motion along the gravitational and body axes</title><author>Sabbah, Shai ; Gemmer, John A. ; Bhatia-Lin, Ananya ; Manoff, Gabrielle ; Castro, Gabriel ; Siegel, Jesse K. ; Jeffery, Nathan ; Berson, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/1</topic><topic>13/44</topic><topic>14/19</topic><topic>14/34</topic><topic>14/35</topic><topic>14/69</topic><topic>631/378/2613/1483</topic><topic>631/378/2613/1786</topic><topic>631/378/2617/1780</topic><topic>631/378/2629/1779</topic><topic>631/378/3917</topic><topic>64/60</topic><topic>9/74</topic><topic>Animals</topic><topic>Female</topic><topic>Gravitation</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Motion perception (Vision)</topic><topic>Movement (Physiology)</topic><topic>multidisciplinary</topic><topic>Neurons</topic><topic>Observations</topic><topic>Ocular Physiological Phenomena</topic><topic>Optic Flow - physiology</topic><topic>Physiological aspects</topic><topic>Physiological research</topic><topic>Postural Balance - physiology</topic><topic>Retina</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Rotation</topic><topic>Science</topic><topic>Space Perception - physiology</topic><topic>Vestibule, Labyrinth - physiology</topic><topic>Visual pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabbah, Shai</creatorcontrib><creatorcontrib>Gemmer, John A.</creatorcontrib><creatorcontrib>Bhatia-Lin, Ananya</creatorcontrib><creatorcontrib>Manoff, Gabrielle</creatorcontrib><creatorcontrib>Castro, Gabriel</creatorcontrib><creatorcontrib>Siegel, Jesse K.</creatorcontrib><creatorcontrib>Jeffery, Nathan</creatorcontrib><creatorcontrib>Berson, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabbah, Shai</au><au>Gemmer, John A.</au><au>Bhatia-Lin, Ananya</au><au>Manoff, Gabrielle</au><au>Castro, Gabriel</au><au>Siegel, Jesse K.</au><au>Jeffery, Nathan</au><au>Berson, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A retinal code for motion along the gravitational and body axes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-06-22</date><risdate>2017</risdate><volume>546</volume><issue>7659</issue><spage>492</spage><epage>497</epage><pages>492-497</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas in vitro . Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ. Global mapping shows that mouse retinal neurons prefer visual motion produced when the animal moves along two behaviourally relevant axes, allowing the encoding of the animal’s every translation and rotation. All eyes on motion encoding The local wiring that allows some retinal neurons to detect motion direction in visual stimuli has been well studied, but how their ensemble encodes optic flow more generally has not. Now David Berson and colleagues have performed a global mapping of direction preferences in mouse direction-sensitive ganglion cells (DSGCs) and show that they align with just two ethologically relevant axes: the body axis and the gravitational axis. Relative activation of the sixteen resulting channels, that is four cardinal directions multiplied by two DSGC types (ON vs ON-OFF) for two eyes, allows for the unique encoding of every translation and rotation associated with the animal's self-motion. This creates a visual feedback that complements the bio-mechanical vestibular system in controlling image stabilization and balance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28607486</pmid><doi>10.1038/nature22818</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2017-06, Vol.546 (7659), p.492-497
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5729591
source Nature
subjects 13/1
13/44
14/19
14/34
14/35
14/69
631/378/2613/1483
631/378/2613/1786
631/378/2617/1780
631/378/2629/1779
631/378/3917
64/60
9/74
Animals
Female
Gravitation
Humanities and Social Sciences
Male
Mice
Motion perception (Vision)
Movement (Physiology)
multidisciplinary
Neurons
Observations
Ocular Physiological Phenomena
Optic Flow - physiology
Physiological aspects
Physiological research
Postural Balance - physiology
Retina
Retinal Ganglion Cells - physiology
Rotation
Science
Space Perception - physiology
Vestibule, Labyrinth - physiology
Visual pathways
title A retinal code for motion along the gravitational and body axes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20retinal%20code%20for%20motion%20along%20the%20gravitational%20and%20body%20axes&rft.jtitle=Nature%20(London)&rft.au=Sabbah,%20Shai&rft.date=2017-06-22&rft.volume=546&rft.issue=7659&rft.spage=492&rft.epage=497&rft.pages=492-497&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature22818&rft_dat=%3Cgale_pubme%3EA496332628%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909230794&rft_id=info:pmid/28607486&rft_galeid=A496332628&rfr_iscdi=true