Loading…
A retinal code for motion along the gravitational and body axes
Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSG...
Saved in:
Published in: | Nature (London) 2017-06, Vol.546 (7659), p.492-497 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923 |
---|---|
cites | cdi_FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923 |
container_end_page | 497 |
container_issue | 7659 |
container_start_page | 492 |
container_title | Nature (London) |
container_volume | 546 |
creator | Sabbah, Shai Gemmer, John A. Bhatia-Lin, Ananya Manoff, Gabrielle Castro, Gabriel Siegel, Jesse K. Jeffery, Nathan Berson, David M. |
description | Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas
in vitro
. Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ.
Global mapping shows that mouse retinal neurons prefer visual motion produced when the animal moves along two behaviourally relevant axes, allowing the encoding of the animal’s every translation and rotation.
All eyes on motion encoding
The local wiring that allows some retinal neurons to detect motion direction in visual stimuli has been well studied, but how their ensemble encodes optic flow more generally has not. Now David Berson and colleagues have performed a global mapping of direction preferences in mouse direction-sensitive ganglion cells (DSGCs) and show that they align with just two ethologically relevant axes: the body axis and the gravitational axis. Relative activation of the sixteen resulting channels, that is four cardinal directions multiplied by two DSGC types (ON vs ON-OFF) for two eyes, allows for the unique encoding of every translation and rotation associated with the animal's self-motion. This creates a visual feedback that complements the bio-mechanical vestibular system in controlling image stabilization and balance. |
doi_str_mv | 10.1038/nature22818 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5729591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A496332628</galeid><sourcerecordid>A496332628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923</originalsourceid><addsrcrecordid>eNqNk0tr3DAQgE1paTZpT70X015aWqcj2ZbkS8sS-ggECn2chVYeOQpeaSPZIfn30bJp8ILbBh0Emm--GcRMlr0gcEygFB-cGsaAlAoiHmULUnFWVEzwx9kCgIoCRMkOssMYLwCgJrx6mh1QwYBXgi2yT8s84GCd6nPtW8yND_naD9a7XPXedflwjnkX1JUd1PY1ccq1-cq3N7m6xvgse2JUH_H53X2U_f7y-dfJt-Ls-9fTk-VZoUUthoK3qFXFVwCiMmCIIVwpqKAFwYRGUJQhkJqCMQwF1a1KDaJhLTN1TRtaHmUfd97NuFpjq9ENQfVyE-xahRvplZX7EWfPZeevZM1pUzckCd7cCYK_HDEOcm2jxr5XDv0YJWkglQHeVAl9vUM71aO0zvhk1FtcLhkDyoED-ydVNawsKaMiUcUM1aHDsP1fNDY971kfwk_9r2Z4vbGXcir9KzQ1Hc9A6bS4tnq21QclTCu83UtIzIDXQ6fGGOXpzx_78v-xU--7HauDjzGguR8LAnK7InKyIol-OZ2ke_bPTiTg_Q6IKeQ6DPLCjyFNfpz13QKyGxTC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909230794</pqid></control><display><type>article</type><title>A retinal code for motion along the gravitational and body axes</title><source>Nature</source><creator>Sabbah, Shai ; Gemmer, John A. ; Bhatia-Lin, Ananya ; Manoff, Gabrielle ; Castro, Gabriel ; Siegel, Jesse K. ; Jeffery, Nathan ; Berson, David M.</creator><creatorcontrib>Sabbah, Shai ; Gemmer, John A. ; Bhatia-Lin, Ananya ; Manoff, Gabrielle ; Castro, Gabriel ; Siegel, Jesse K. ; Jeffery, Nathan ; Berson, David M.</creatorcontrib><description>Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas
in vitro
. Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ.
Global mapping shows that mouse retinal neurons prefer visual motion produced when the animal moves along two behaviourally relevant axes, allowing the encoding of the animal’s every translation and rotation.
All eyes on motion encoding
The local wiring that allows some retinal neurons to detect motion direction in visual stimuli has been well studied, but how their ensemble encodes optic flow more generally has not. Now David Berson and colleagues have performed a global mapping of direction preferences in mouse direction-sensitive ganglion cells (DSGCs) and show that they align with just two ethologically relevant axes: the body axis and the gravitational axis. Relative activation of the sixteen resulting channels, that is four cardinal directions multiplied by two DSGC types (ON vs ON-OFF) for two eyes, allows for the unique encoding of every translation and rotation associated with the animal's self-motion. This creates a visual feedback that complements the bio-mechanical vestibular system in controlling image stabilization and balance.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature22818</identifier><identifier>PMID: 28607486</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/44 ; 14/19 ; 14/34 ; 14/35 ; 14/69 ; 631/378/2613/1483 ; 631/378/2613/1786 ; 631/378/2617/1780 ; 631/378/2629/1779 ; 631/378/3917 ; 64/60 ; 9/74 ; Animals ; Female ; Gravitation ; Humanities and Social Sciences ; Male ; Mice ; Motion perception (Vision) ; Movement (Physiology) ; multidisciplinary ; Neurons ; Observations ; Ocular Physiological Phenomena ; Optic Flow - physiology ; Physiological aspects ; Physiological research ; Postural Balance - physiology ; Retina ; Retinal Ganglion Cells - physiology ; Rotation ; Science ; Space Perception - physiology ; Vestibule, Labyrinth - physiology ; Visual pathways</subject><ispartof>Nature (London), 2017-06, Vol.546 (7659), p.492-497</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923</citedby><cites>FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28607486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabbah, Shai</creatorcontrib><creatorcontrib>Gemmer, John A.</creatorcontrib><creatorcontrib>Bhatia-Lin, Ananya</creatorcontrib><creatorcontrib>Manoff, Gabrielle</creatorcontrib><creatorcontrib>Castro, Gabriel</creatorcontrib><creatorcontrib>Siegel, Jesse K.</creatorcontrib><creatorcontrib>Jeffery, Nathan</creatorcontrib><creatorcontrib>Berson, David M.</creatorcontrib><title>A retinal code for motion along the gravitational and body axes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas
in vitro
. Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ.
Global mapping shows that mouse retinal neurons prefer visual motion produced when the animal moves along two behaviourally relevant axes, allowing the encoding of the animal’s every translation and rotation.
All eyes on motion encoding
The local wiring that allows some retinal neurons to detect motion direction in visual stimuli has been well studied, but how their ensemble encodes optic flow more generally has not. Now David Berson and colleagues have performed a global mapping of direction preferences in mouse direction-sensitive ganglion cells (DSGCs) and show that they align with just two ethologically relevant axes: the body axis and the gravitational axis. Relative activation of the sixteen resulting channels, that is four cardinal directions multiplied by two DSGC types (ON vs ON-OFF) for two eyes, allows for the unique encoding of every translation and rotation associated with the animal's self-motion. This creates a visual feedback that complements the bio-mechanical vestibular system in controlling image stabilization and balance.</description><subject>13/1</subject><subject>13/44</subject><subject>14/19</subject><subject>14/34</subject><subject>14/35</subject><subject>14/69</subject><subject>631/378/2613/1483</subject><subject>631/378/2613/1786</subject><subject>631/378/2617/1780</subject><subject>631/378/2629/1779</subject><subject>631/378/3917</subject><subject>64/60</subject><subject>9/74</subject><subject>Animals</subject><subject>Female</subject><subject>Gravitation</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Motion perception (Vision)</subject><subject>Movement (Physiology)</subject><subject>multidisciplinary</subject><subject>Neurons</subject><subject>Observations</subject><subject>Ocular Physiological Phenomena</subject><subject>Optic Flow - physiology</subject><subject>Physiological aspects</subject><subject>Physiological research</subject><subject>Postural Balance - physiology</subject><subject>Retina</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Rotation</subject><subject>Science</subject><subject>Space Perception - physiology</subject><subject>Vestibule, Labyrinth - physiology</subject><subject>Visual pathways</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNk0tr3DAQgE1paTZpT70X015aWqcj2ZbkS8sS-ggECn2chVYeOQpeaSPZIfn30bJp8ILbBh0Emm--GcRMlr0gcEygFB-cGsaAlAoiHmULUnFWVEzwx9kCgIoCRMkOssMYLwCgJrx6mh1QwYBXgi2yT8s84GCd6nPtW8yND_naD9a7XPXedflwjnkX1JUd1PY1ccq1-cq3N7m6xvgse2JUH_H53X2U_f7y-dfJt-Ls-9fTk-VZoUUthoK3qFXFVwCiMmCIIVwpqKAFwYRGUJQhkJqCMQwF1a1KDaJhLTN1TRtaHmUfd97NuFpjq9ENQfVyE-xahRvplZX7EWfPZeevZM1pUzckCd7cCYK_HDEOcm2jxr5XDv0YJWkglQHeVAl9vUM71aO0zvhk1FtcLhkDyoED-ydVNawsKaMiUcUM1aHDsP1fNDY971kfwk_9r2Z4vbGXcir9KzQ1Hc9A6bS4tnq21QclTCu83UtIzIDXQ6fGGOXpzx_78v-xU--7HauDjzGguR8LAnK7InKyIol-OZ2ke_bPTiTg_Q6IKeQ6DPLCjyFNfpz13QKyGxTC</recordid><startdate>20170622</startdate><enddate>20170622</enddate><creator>Sabbah, Shai</creator><creator>Gemmer, John A.</creator><creator>Bhatia-Lin, Ananya</creator><creator>Manoff, Gabrielle</creator><creator>Castro, Gabriel</creator><creator>Siegel, Jesse K.</creator><creator>Jeffery, Nathan</creator><creator>Berson, David M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170622</creationdate><title>A retinal code for motion along the gravitational and body axes</title><author>Sabbah, Shai ; Gemmer, John A. ; Bhatia-Lin, Ananya ; Manoff, Gabrielle ; Castro, Gabriel ; Siegel, Jesse K. ; Jeffery, Nathan ; Berson, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/1</topic><topic>13/44</topic><topic>14/19</topic><topic>14/34</topic><topic>14/35</topic><topic>14/69</topic><topic>631/378/2613/1483</topic><topic>631/378/2613/1786</topic><topic>631/378/2617/1780</topic><topic>631/378/2629/1779</topic><topic>631/378/3917</topic><topic>64/60</topic><topic>9/74</topic><topic>Animals</topic><topic>Female</topic><topic>Gravitation</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Motion perception (Vision)</topic><topic>Movement (Physiology)</topic><topic>multidisciplinary</topic><topic>Neurons</topic><topic>Observations</topic><topic>Ocular Physiological Phenomena</topic><topic>Optic Flow - physiology</topic><topic>Physiological aspects</topic><topic>Physiological research</topic><topic>Postural Balance - physiology</topic><topic>Retina</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Rotation</topic><topic>Science</topic><topic>Space Perception - physiology</topic><topic>Vestibule, Labyrinth - physiology</topic><topic>Visual pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabbah, Shai</creatorcontrib><creatorcontrib>Gemmer, John A.</creatorcontrib><creatorcontrib>Bhatia-Lin, Ananya</creatorcontrib><creatorcontrib>Manoff, Gabrielle</creatorcontrib><creatorcontrib>Castro, Gabriel</creatorcontrib><creatorcontrib>Siegel, Jesse K.</creatorcontrib><creatorcontrib>Jeffery, Nathan</creatorcontrib><creatorcontrib>Berson, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabbah, Shai</au><au>Gemmer, John A.</au><au>Bhatia-Lin, Ananya</au><au>Manoff, Gabrielle</au><au>Castro, Gabriel</au><au>Siegel, Jesse K.</au><au>Jeffery, Nathan</au><au>Berson, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A retinal code for motion along the gravitational and body axes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-06-22</date><risdate>2017</risdate><volume>546</volume><issue>7659</issue><spage>492</spage><epage>497</epage><pages>492-497</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas
in vitro
. Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ.
Global mapping shows that mouse retinal neurons prefer visual motion produced when the animal moves along two behaviourally relevant axes, allowing the encoding of the animal’s every translation and rotation.
All eyes on motion encoding
The local wiring that allows some retinal neurons to detect motion direction in visual stimuli has been well studied, but how their ensemble encodes optic flow more generally has not. Now David Berson and colleagues have performed a global mapping of direction preferences in mouse direction-sensitive ganglion cells (DSGCs) and show that they align with just two ethologically relevant axes: the body axis and the gravitational axis. Relative activation of the sixteen resulting channels, that is four cardinal directions multiplied by two DSGC types (ON vs ON-OFF) for two eyes, allows for the unique encoding of every translation and rotation associated with the animal's self-motion. This creates a visual feedback that complements the bio-mechanical vestibular system in controlling image stabilization and balance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28607486</pmid><doi>10.1038/nature22818</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2017-06, Vol.546 (7659), p.492-497 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5729591 |
source | Nature |
subjects | 13/1 13/44 14/19 14/34 14/35 14/69 631/378/2613/1483 631/378/2613/1786 631/378/2617/1780 631/378/2629/1779 631/378/3917 64/60 9/74 Animals Female Gravitation Humanities and Social Sciences Male Mice Motion perception (Vision) Movement (Physiology) multidisciplinary Neurons Observations Ocular Physiological Phenomena Optic Flow - physiology Physiological aspects Physiological research Postural Balance - physiology Retina Retinal Ganglion Cells - physiology Rotation Science Space Perception - physiology Vestibule, Labyrinth - physiology Visual pathways |
title | A retinal code for motion along the gravitational and body axes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20retinal%20code%20for%20motion%20along%20the%20gravitational%20and%20body%20axes&rft.jtitle=Nature%20(London)&rft.au=Sabbah,%20Shai&rft.date=2017-06-22&rft.volume=546&rft.issue=7659&rft.spage=492&rft.epage=497&rft.pages=492-497&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature22818&rft_dat=%3Cgale_pubme%3EA496332628%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c858t-7deca47b0084f0f1f17aa040d0868ce0a26e01520ff6e82cda607ef6d6f552923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909230794&rft_id=info:pmid/28607486&rft_galeid=A496332628&rfr_iscdi=true |