Loading…

Real-time motion analytics during brain MRI improve data quality and reduce costs

Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring c...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2017-11, Vol.161, p.80-93
Main Authors: Dosenbach, Nico U.F., Koller, Jonathan M., Earl, Eric A., Miranda-Dominguez, Oscar, Klein, Rachel L., Van, Andrew N., Snyder, Abraham Z., Nagel, Bonnie J., Nigg, Joel T., Nguyen, Annie L., Wesevich, Victoria, Greene, Deanna J., Fair, Damien A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-13c4e845b6dad91048beb7321eb6d0436470d9b04c8531705929dbc8ac89ed7d3
cites cdi_FETCH-LOGICAL-c507t-13c4e845b6dad91048beb7321eb6d0436470d9b04c8531705929dbc8ac89ed7d3
container_end_page 93
container_issue
container_start_page 80
container_title NeuroImage (Orlando, Fla.)
container_volume 161
creator Dosenbach, Nico U.F.
Koller, Jonathan M.
Earl, Eric A.
Miranda-Dominguez, Oscar
Klein, Rachel L.
Van, Andrew N.
Snyder, Abraham Z.
Nagel, Bonnie J.
Nigg, Joel T.
Nguyen, Annie L.
Wesevich, Victoria
Greene, Deanna J.
Fair, Damien A.
description Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. [Display omitted]
doi_str_mv 10.1016/j.neuroimage.2017.08.025
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5731481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917306729</els_id><sourcerecordid>1965445393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-13c4e845b6dad91048beb7321eb6d0436470d9b04c8531705929dbc8ac89ed7d3</originalsourceid><addsrcrecordid>eNqFkVFvFCEUhYmxsbX6FwyJzzNeBtiBFxNtqjZp07TRZ8LA7cpmZtgCs8n-e9lsrfrkEzfw3XO55xBCGbQM2OrDpp1xSTFMdo1tB6xvQbXQyRfkjIGWjZZ99_JQS94oxvQpeZ3zBgA0E-oVOe2UAq4FnJG7e7RjU8KEdIolxJna2Y77ElymfklhXtMh2TDTm_srGqZtijuk3hZLHxc7hrKvvKcJ_eKQuphLfkNOHuyY8e3TeU5-fLn8fvGtub79enXx6bpxEvrSMO4EKiGHlbdeMxBqwKHnHcN6A4KvRA9eDyCckpz1IHWn_eCUdUqj7z0_Jx-PuttlmNA7nEuyo9mm6kram2iD-fdlDj_NOu6M7Hl1gVWB908CKT4umIvZxCXV7bNheiWFkFzzSqkj5VLMOeHD8wQG5hCG2Zg_YZhDGAaUqWHU1nd___C58bf7Ffh8BLD6tAuYTHYBZ4c-JHTF-Bj-P-UXG8yhlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965445393</pqid></control><display><type>article</type><title>Real-time motion analytics during brain MRI improve data quality and reduce costs</title><source>ScienceDirect Journals</source><creator>Dosenbach, Nico U.F. ; Koller, Jonathan M. ; Earl, Eric A. ; Miranda-Dominguez, Oscar ; Klein, Rachel L. ; Van, Andrew N. ; Snyder, Abraham Z. ; Nagel, Bonnie J. ; Nigg, Joel T. ; Nguyen, Annie L. ; Wesevich, Victoria ; Greene, Deanna J. ; Fair, Damien A.</creator><creatorcontrib>Dosenbach, Nico U.F. ; Koller, Jonathan M. ; Earl, Eric A. ; Miranda-Dominguez, Oscar ; Klein, Rachel L. ; Van, Andrew N. ; Snyder, Abraham Z. ; Nagel, Bonnie J. ; Nigg, Joel T. ; Nguyen, Annie L. ; Wesevich, Victoria ; Greene, Deanna J. ; Fair, Damien A.</creatorcontrib><description>Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. [Display omitted]</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.08.025</identifier><identifier>PMID: 28803940</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Adolescent ; Adult ; Alcoholism - diagnostic imaging ; Attention Deficit Disorder with Hyperactivity - diagnostic imaging ; Autism Spectrum Disorder - diagnostic imaging ; Brain ; Brain - diagnostic imaging ; Child ; Cost control ; Functional magnetic resonance imaging ; Functional MRI ; Functional Neuroimaging - methods ; Functional Neuroimaging - standards ; Head motion distortion ; Head movement ; Head Movements - physiology ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - standards ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - standards ; MRI acquisition ; MRI methods ; Neural networks ; NMR ; Nuclear magnetic resonance ; Quality ; Real-time quality control ; Resting state functional connectivity MRI ; Scanners ; Structural MRI ; Structure-function relationships ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-11, Vol.161, p.80-93</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-13c4e845b6dad91048beb7321eb6d0436470d9b04c8531705929dbc8ac89ed7d3</citedby><cites>FETCH-LOGICAL-c507t-13c4e845b6dad91048beb7321eb6d0436470d9b04c8531705929dbc8ac89ed7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28803940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dosenbach, Nico U.F.</creatorcontrib><creatorcontrib>Koller, Jonathan M.</creatorcontrib><creatorcontrib>Earl, Eric A.</creatorcontrib><creatorcontrib>Miranda-Dominguez, Oscar</creatorcontrib><creatorcontrib>Klein, Rachel L.</creatorcontrib><creatorcontrib>Van, Andrew N.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Nagel, Bonnie J.</creatorcontrib><creatorcontrib>Nigg, Joel T.</creatorcontrib><creatorcontrib>Nguyen, Annie L.</creatorcontrib><creatorcontrib>Wesevich, Victoria</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Fair, Damien A.</creatorcontrib><title>Real-time motion analytics during brain MRI improve data quality and reduce costs</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. [Display omitted]</description><subject>Accuracy</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Alcoholism - diagnostic imaging</subject><subject>Attention Deficit Disorder with Hyperactivity - diagnostic imaging</subject><subject>Autism Spectrum Disorder - diagnostic imaging</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Child</subject><subject>Cost control</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional MRI</subject><subject>Functional Neuroimaging - methods</subject><subject>Functional Neuroimaging - standards</subject><subject>Head motion distortion</subject><subject>Head movement</subject><subject>Head Movements - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - standards</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - standards</subject><subject>MRI acquisition</subject><subject>MRI methods</subject><subject>Neural networks</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Quality</subject><subject>Real-time quality control</subject><subject>Resting state functional connectivity MRI</subject><subject>Scanners</subject><subject>Structural MRI</subject><subject>Structure-function relationships</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkVFvFCEUhYmxsbX6FwyJzzNeBtiBFxNtqjZp07TRZ8LA7cpmZtgCs8n-e9lsrfrkEzfw3XO55xBCGbQM2OrDpp1xSTFMdo1tB6xvQbXQyRfkjIGWjZZ99_JQS94oxvQpeZ3zBgA0E-oVOe2UAq4FnJG7e7RjU8KEdIolxJna2Y77ElymfklhXtMh2TDTm_srGqZtijuk3hZLHxc7hrKvvKcJ_eKQuphLfkNOHuyY8e3TeU5-fLn8fvGtub79enXx6bpxEvrSMO4EKiGHlbdeMxBqwKHnHcN6A4KvRA9eDyCckpz1IHWn_eCUdUqj7z0_Jx-PuttlmNA7nEuyo9mm6kram2iD-fdlDj_NOu6M7Hl1gVWB908CKT4umIvZxCXV7bNheiWFkFzzSqkj5VLMOeHD8wQG5hCG2Zg_YZhDGAaUqWHU1nd___C58bf7Ffh8BLD6tAuYTHYBZ4c-JHTF-Bj-P-UXG8yhlw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Dosenbach, Nico U.F.</creator><creator>Koller, Jonathan M.</creator><creator>Earl, Eric A.</creator><creator>Miranda-Dominguez, Oscar</creator><creator>Klein, Rachel L.</creator><creator>Van, Andrew N.</creator><creator>Snyder, Abraham Z.</creator><creator>Nagel, Bonnie J.</creator><creator>Nigg, Joel T.</creator><creator>Nguyen, Annie L.</creator><creator>Wesevich, Victoria</creator><creator>Greene, Deanna J.</creator><creator>Fair, Damien A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>Real-time motion analytics during brain MRI improve data quality and reduce costs</title><author>Dosenbach, Nico U.F. ; Koller, Jonathan M. ; Earl, Eric A. ; Miranda-Dominguez, Oscar ; Klein, Rachel L. ; Van, Andrew N. ; Snyder, Abraham Z. ; Nagel, Bonnie J. ; Nigg, Joel T. ; Nguyen, Annie L. ; Wesevich, Victoria ; Greene, Deanna J. ; Fair, Damien A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-13c4e845b6dad91048beb7321eb6d0436470d9b04c8531705929dbc8ac89ed7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Alcoholism - diagnostic imaging</topic><topic>Attention Deficit Disorder with Hyperactivity - diagnostic imaging</topic><topic>Autism Spectrum Disorder - diagnostic imaging</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Child</topic><topic>Cost control</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional MRI</topic><topic>Functional Neuroimaging - methods</topic><topic>Functional Neuroimaging - standards</topic><topic>Head motion distortion</topic><topic>Head movement</topic><topic>Head Movements - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - standards</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - standards</topic><topic>MRI acquisition</topic><topic>MRI methods</topic><topic>Neural networks</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Quality</topic><topic>Real-time quality control</topic><topic>Resting state functional connectivity MRI</topic><topic>Scanners</topic><topic>Structural MRI</topic><topic>Structure-function relationships</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dosenbach, Nico U.F.</creatorcontrib><creatorcontrib>Koller, Jonathan M.</creatorcontrib><creatorcontrib>Earl, Eric A.</creatorcontrib><creatorcontrib>Miranda-Dominguez, Oscar</creatorcontrib><creatorcontrib>Klein, Rachel L.</creatorcontrib><creatorcontrib>Van, Andrew N.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Nagel, Bonnie J.</creatorcontrib><creatorcontrib>Nigg, Joel T.</creatorcontrib><creatorcontrib>Nguyen, Annie L.</creatorcontrib><creatorcontrib>Wesevich, Victoria</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Fair, Damien A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dosenbach, Nico U.F.</au><au>Koller, Jonathan M.</au><au>Earl, Eric A.</au><au>Miranda-Dominguez, Oscar</au><au>Klein, Rachel L.</au><au>Van, Andrew N.</au><au>Snyder, Abraham Z.</au><au>Nagel, Bonnie J.</au><au>Nigg, Joel T.</au><au>Nguyen, Annie L.</au><au>Wesevich, Victoria</au><au>Greene, Deanna J.</au><au>Fair, Damien A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time motion analytics during brain MRI improve data quality and reduce costs</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>161</volume><spage>80</spage><epage>93</epage><pages>80-93</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28803940</pmid><doi>10.1016/j.neuroimage.2017.08.025</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2017-11, Vol.161, p.80-93
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5731481
source ScienceDirect Journals
subjects Accuracy
Adolescent
Adult
Alcoholism - diagnostic imaging
Attention Deficit Disorder with Hyperactivity - diagnostic imaging
Autism Spectrum Disorder - diagnostic imaging
Brain
Brain - diagnostic imaging
Child
Cost control
Functional magnetic resonance imaging
Functional MRI
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Head motion distortion
Head movement
Head Movements - physiology
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
MRI acquisition
MRI methods
Neural networks
NMR
Nuclear magnetic resonance
Quality
Real-time quality control
Resting state functional connectivity MRI
Scanners
Structural MRI
Structure-function relationships
Young Adult
title Real-time motion analytics during brain MRI improve data quality and reduce costs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20motion%20analytics%20during%20brain%20MRI%20improve%20data%20quality%20and%20reduce%20costs&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Dosenbach,%20Nico%20U.F.&rft.date=2017-11-01&rft.volume=161&rft.spage=80&rft.epage=93&rft.pages=80-93&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.08.025&rft_dat=%3Cproquest_pubme%3E1965445393%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-13c4e845b6dad91048beb7321eb6d0436470d9b04c8531705929dbc8ac89ed7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965445393&rft_id=info:pmid/28803940&rfr_iscdi=true