Loading…

Simulations of a Vibrissa Slipping along a Straight Edge and an Analysis of Frictional Effects during Whisking

During tactile exploration, rats sweep their whiskers against objects in a motion called whisking. Here, we investigate how a whisker slips along an object's edge and how friction affects the resulting tactile signals. First, a frictionless model is developed to simulate whisker slip along a st...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on haptics 2016-04, Vol.9 (2), p.158-169
Main Authors: Huet, Lucie A., Hartmann, Mitra J.Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During tactile exploration, rats sweep their whiskers against objects in a motion called whisking. Here, we investigate how a whisker slips along an object's edge and how friction affects the resulting tactile signals. First, a frictionless model is developed to simulate whisker slip along a straight edge and compared with a previous model that incorporates friction but cannot simulate slip. Results of both models are compared to behavioral data obtained as a rat whisked against a smooth, stainless steel peg. As expected, the frictionless model predicts larger magnitudes of vertical slip than observed experimentally. The frictionless model also predicts forces and moments at the whisker base that are smaller and have a different direction than those predicted by the model with friction. Estimates for the friction coefficient yielded values near 0.48 (whisker/stainless steel). The present work provides the first assessments of the effects of friction on the mechanical signals received by the follicle during active whisking. It also demonstrates a proof-of-principle approach for reducing whisker tracking requirements during experiments and demonstrates the feasibility of simulating a full array of vibrissae whisking against a peg.
ISSN:1939-1412
2329-4051
DOI:10.1109/TOH.2016.2522432