Loading…

Unraveling the Electronic Structure of Narrow Atomically Precise Chiral Graphene Nanoribbons

Recent advances in graphene-nanoribbon-based research have demonstrated the controlled synthesis of chiral graphene nanoribbons (chGNRs) with atomic precision using strategies of on-surface chemistry. However, their electronic characterization, including typical figures of merit like band gap or fro...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2018-01, Vol.9 (1), p.25-30
Main Authors: Merino-Díez, Néstor, Li, Jingcheng, Garcia-Lekue, Aran, Vasseur, Guillaume, Vilas-Varela, Manuel, Carbonell-Sanromà, Eduard, Corso, Martina, Ortega, J. Enrique, Peña, Diego, Pascual, Jose I, de Oteyza, Dimas G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advances in graphene-nanoribbon-based research have demonstrated the controlled synthesis of chiral graphene nanoribbons (chGNRs) with atomic precision using strategies of on-surface chemistry. However, their electronic characterization, including typical figures of merit like band gap or frontier band’s effective mass, has not yet been reported. We provide a detailed characterization of (3,1)-chGNRs on Au(111). The structure and epitaxy, as well as the electronic band structure of the ribbons, are analyzed by means of scanning tunneling microscopy and spectroscopy, angle-resolved photoemission, and density functional theory.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.7b02767