Loading…

Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction

Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2018-01, Vol.19 (1), p.19-23
Main Authors: Van Patten, William J., Walder, Robert, Adhikari, Ayush, Okoniewski, Stephen R., Ravichandran, Rashmi, Tinberg, Christine E., Baker, David, Perkins, Thomas T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33
cites cdi_FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33
container_end_page 23
container_issue 1
container_start_page 19
container_title Chemphyschem
container_volume 19
creator Van Patten, William J.
Walder, Robert
Adhikari, Ayush
Okoniewski, Stephen R.
Ravichandran, Rashmi
Tinberg, Christine E.
Baker, David
Perkins, Thomas T.
description Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate constant (koff) and the distance to the transition state (Δx≠). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠=6.3±0.2 kcal mol−1) and the shape of the energy barrier at the transition state (linear‐cubic) in addition to the traditional parameters [koff (=4±0.1×10−4 s−1) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein–ligand interactions and, more broadly, the diverse systems studied by AFM‐based force spectroscopy. Force‐induced unbinding: Applying force to a protein–ligand interaction speeds up the kinetics of dissociation. Applying advanced models to the relationship between the dissociation rate and applied force reveals new insights into the energy landscape of dissociation.
doi_str_mv 10.1002/cphc.201701147
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5760306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956096943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33</originalsourceid><addsrcrecordid>eNqFkUFv0zAcxSMEYmNw5YgiceHSznZiJ74gobCxSpUYEpwt1_mn9eTYwXY2ettHQOIb7pPgrKUbXDjZ1vv9n5_9suw1RnOMEDlVw0bNCcIVwrisnmTHuCz4rGIlfrrfl6SgR9mLEK4QQjWq8PPsiHDEOCX8OPux6AfvrqHNzz3A3e3PMwt-vc2X0rZByQHyL6O0UXdayaidzRfGjCF6GdPIjY6bXOaN64cx3svSmG3-EYJe26RfehdB27vbX0u9Tob5wkbwUk3ky-xZJ02AV_v1JPt2fva1uZgtP39aNB-WM0URrWay46WiBDDiVNZ1wVW3IowCwQUDxBCRXbHiVV0r0nGSjoBLANLWQFirVkVxkr3f-Q7jqodWgU3hjRi87qXfCie1-FuxeiPW7lrQiqECsWTwbm_g3fcRQhS9DgqMkRbcGATmlCHOeDnd9fYf9MqNPn3KRNUlS_Fxlaj5jlLeheChO4TBSEyliqlUcSg1Dbx5_IQD_qfFBPAdcKMNbP9jJ5rLi-bB_Dd8W7MU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984683917</pqid></control><display><type>article</type><title>Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Van Patten, William J. ; Walder, Robert ; Adhikari, Ayush ; Okoniewski, Stephen R. ; Ravichandran, Rashmi ; Tinberg, Christine E. ; Baker, David ; Perkins, Thomas T.</creator><creatorcontrib>Van Patten, William J. ; Walder, Robert ; Adhikari, Ayush ; Okoniewski, Stephen R. ; Ravichandran, Rashmi ; Tinberg, Christine E. ; Baker, David ; Perkins, Thomas T.</creatorcontrib><description>Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate constant (koff) and the distance to the transition state (Δx≠). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠=6.3±0.2 kcal mol−1) and the shape of the energy barrier at the transition state (linear‐cubic) in addition to the traditional parameters [koff (=4±0.1×10−4 s−1) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein–ligand interactions and, more broadly, the diverse systems studied by AFM‐based force spectroscopy. Force‐induced unbinding: Applying force to a protein–ligand interaction speeds up the kinetics of dissociation. Applying advanced models to the relationship between the dissociation rate and applied force reveals new insights into the energy landscape of dissociation.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201701147</identifier><identifier>PMID: 29069529</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Binding Sites ; Computer-Aided Design ; Digoxigenin - chemistry ; energy landscape ; Ligands ; Microscopy, Atomic Force ; protein design ; Proteins ; Proteins - chemistry ; protein–ligand interactions ; single-molecule force spectroscopy ; Spectrum analysis ; Thermodynamics</subject><ispartof>Chemphyschem, 2018-01, Vol.19 (1), p.19-23</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33</citedby><cites>FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33</cites><orcidid>0000-0003-4826-9490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29069529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Patten, William J.</creatorcontrib><creatorcontrib>Walder, Robert</creatorcontrib><creatorcontrib>Adhikari, Ayush</creatorcontrib><creatorcontrib>Okoniewski, Stephen R.</creatorcontrib><creatorcontrib>Ravichandran, Rashmi</creatorcontrib><creatorcontrib>Tinberg, Christine E.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Perkins, Thomas T.</creatorcontrib><title>Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate constant (koff) and the distance to the transition state (Δx≠). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠=6.3±0.2 kcal mol−1) and the shape of the energy barrier at the transition state (linear‐cubic) in addition to the traditional parameters [koff (=4±0.1×10−4 s−1) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein–ligand interactions and, more broadly, the diverse systems studied by AFM‐based force spectroscopy. Force‐induced unbinding: Applying force to a protein–ligand interaction speeds up the kinetics of dissociation. Applying advanced models to the relationship between the dissociation rate and applied force reveals new insights into the energy landscape of dissociation.</description><subject>Atomic force microscopy</subject><subject>Binding Sites</subject><subject>Computer-Aided Design</subject><subject>Digoxigenin - chemistry</subject><subject>energy landscape</subject><subject>Ligands</subject><subject>Microscopy, Atomic Force</subject><subject>protein design</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>protein–ligand interactions</subject><subject>single-molecule force spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thermodynamics</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAcxSMEYmNw5YgiceHSznZiJ74gobCxSpUYEpwt1_mn9eTYwXY2ettHQOIb7pPgrKUbXDjZ1vv9n5_9suw1RnOMEDlVw0bNCcIVwrisnmTHuCz4rGIlfrrfl6SgR9mLEK4QQjWq8PPsiHDEOCX8OPux6AfvrqHNzz3A3e3PMwt-vc2X0rZByQHyL6O0UXdayaidzRfGjCF6GdPIjY6bXOaN64cx3svSmG3-EYJe26RfehdB27vbX0u9Tob5wkbwUk3ky-xZJ02AV_v1JPt2fva1uZgtP39aNB-WM0URrWay46WiBDDiVNZ1wVW3IowCwQUDxBCRXbHiVV0r0nGSjoBLANLWQFirVkVxkr3f-Q7jqodWgU3hjRi87qXfCie1-FuxeiPW7lrQiqECsWTwbm_g3fcRQhS9DgqMkRbcGATmlCHOeDnd9fYf9MqNPn3KRNUlS_Fxlaj5jlLeheChO4TBSEyliqlUcSg1Dbx5_IQD_qfFBPAdcKMNbP9jJ5rLi-bB_Dd8W7MU</recordid><startdate>20180105</startdate><enddate>20180105</enddate><creator>Van Patten, William J.</creator><creator>Walder, Robert</creator><creator>Adhikari, Ayush</creator><creator>Okoniewski, Stephen R.</creator><creator>Ravichandran, Rashmi</creator><creator>Tinberg, Christine E.</creator><creator>Baker, David</creator><creator>Perkins, Thomas T.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4826-9490</orcidid></search><sort><creationdate>20180105</creationdate><title>Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction</title><author>Van Patten, William J. ; Walder, Robert ; Adhikari, Ayush ; Okoniewski, Stephen R. ; Ravichandran, Rashmi ; Tinberg, Christine E. ; Baker, David ; Perkins, Thomas T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Binding Sites</topic><topic>Computer-Aided Design</topic><topic>Digoxigenin - chemistry</topic><topic>energy landscape</topic><topic>Ligands</topic><topic>Microscopy, Atomic Force</topic><topic>protein design</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>protein–ligand interactions</topic><topic>single-molecule force spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Patten, William J.</creatorcontrib><creatorcontrib>Walder, Robert</creatorcontrib><creatorcontrib>Adhikari, Ayush</creatorcontrib><creatorcontrib>Okoniewski, Stephen R.</creatorcontrib><creatorcontrib>Ravichandran, Rashmi</creatorcontrib><creatorcontrib>Tinberg, Christine E.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Perkins, Thomas T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Patten, William J.</au><au>Walder, Robert</au><au>Adhikari, Ayush</au><au>Okoniewski, Stephen R.</au><au>Ravichandran, Rashmi</au><au>Tinberg, Christine E.</au><au>Baker, David</au><au>Perkins, Thomas T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2018-01-05</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>19</spage><epage>23</epage><pages>19-23</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate constant (koff) and the distance to the transition state (Δx≠). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠=6.3±0.2 kcal mol−1) and the shape of the energy barrier at the transition state (linear‐cubic) in addition to the traditional parameters [koff (=4±0.1×10−4 s−1) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein–ligand interactions and, more broadly, the diverse systems studied by AFM‐based force spectroscopy. Force‐induced unbinding: Applying force to a protein–ligand interaction speeds up the kinetics of dissociation. Applying advanced models to the relationship between the dissociation rate and applied force reveals new insights into the energy landscape of dissociation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29069529</pmid><doi>10.1002/cphc.201701147</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4826-9490</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2018-01, Vol.19 (1), p.19-23
issn 1439-4235
1439-7641
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5760306
source Wiley-Blackwell Read & Publish Collection
subjects Atomic force microscopy
Binding Sites
Computer-Aided Design
Digoxigenin - chemistry
energy landscape
Ligands
Microscopy, Atomic Force
protein design
Proteins
Proteins - chemistry
protein–ligand interactions
single-molecule force spectroscopy
Spectrum analysis
Thermodynamics
title Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Free%E2%80%90Energy%20Landscape%20Quantification%20Illustrated%20with%20a%20Computationally%20Designed%20Protein%E2%80%93Ligand%20Interaction&rft.jtitle=Chemphyschem&rft.au=Van%E2%80%85Patten,%20William%20J.&rft.date=2018-01-05&rft.volume=19&rft.issue=1&rft.spage=19&rft.epage=23&rft.pages=19-23&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201701147&rft_dat=%3Cproquest_pubme%3E1956096943%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984683917&rft_id=info:pmid/29069529&rfr_iscdi=true