Loading…
Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction
Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate...
Saved in:
Published in: | Chemphyschem 2018-01, Vol.19 (1), p.19-23 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33 |
container_end_page | 23 |
container_issue | 1 |
container_start_page | 19 |
container_title | Chemphyschem |
container_volume | 19 |
creator | Van Patten, William J. Walder, Robert Adhikari, Ayush Okoniewski, Stephen R. Ravichandran, Rashmi Tinberg, Christine E. Baker, David Perkins, Thomas T. |
description | Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate constant (koff) and the distance to the transition state (Δx≠). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠=6.3±0.2 kcal mol−1) and the shape of the energy barrier at the transition state (linear‐cubic) in addition to the traditional parameters [koff (=4±0.1×10−4 s−1) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein–ligand interactions and, more broadly, the diverse systems studied by AFM‐based force spectroscopy.
Force‐induced unbinding: Applying force to a protein–ligand interaction speeds up the kinetics of dissociation. Applying advanced models to the relationship between the dissociation rate and applied force reveals new insights into the energy landscape of dissociation. |
doi_str_mv | 10.1002/cphc.201701147 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5760306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956096943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33</originalsourceid><addsrcrecordid>eNqFkUFv0zAcxSMEYmNw5YgiceHSznZiJ74gobCxSpUYEpwt1_mn9eTYwXY2ettHQOIb7pPgrKUbXDjZ1vv9n5_9suw1RnOMEDlVw0bNCcIVwrisnmTHuCz4rGIlfrrfl6SgR9mLEK4QQjWq8PPsiHDEOCX8OPux6AfvrqHNzz3A3e3PMwt-vc2X0rZByQHyL6O0UXdayaidzRfGjCF6GdPIjY6bXOaN64cx3svSmG3-EYJe26RfehdB27vbX0u9Tob5wkbwUk3ky-xZJ02AV_v1JPt2fva1uZgtP39aNB-WM0URrWay46WiBDDiVNZ1wVW3IowCwQUDxBCRXbHiVV0r0nGSjoBLANLWQFirVkVxkr3f-Q7jqodWgU3hjRi87qXfCie1-FuxeiPW7lrQiqECsWTwbm_g3fcRQhS9DgqMkRbcGATmlCHOeDnd9fYf9MqNPn3KRNUlS_Fxlaj5jlLeheChO4TBSEyliqlUcSg1Dbx5_IQD_qfFBPAdcKMNbP9jJ5rLi-bB_Dd8W7MU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984683917</pqid></control><display><type>article</type><title>Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Van Patten, William J. ; Walder, Robert ; Adhikari, Ayush ; Okoniewski, Stephen R. ; Ravichandran, Rashmi ; Tinberg, Christine E. ; Baker, David ; Perkins, Thomas T.</creator><creatorcontrib>Van Patten, William J. ; Walder, Robert ; Adhikari, Ayush ; Okoniewski, Stephen R. ; Ravichandran, Rashmi ; Tinberg, Christine E. ; Baker, David ; Perkins, Thomas T.</creatorcontrib><description>Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate constant (koff) and the distance to the transition state (Δx≠). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠=6.3±0.2 kcal mol−1) and the shape of the energy barrier at the transition state (linear‐cubic) in addition to the traditional parameters [koff (=4±0.1×10−4 s−1) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein–ligand interactions and, more broadly, the diverse systems studied by AFM‐based force spectroscopy.
Force‐induced unbinding: Applying force to a protein–ligand interaction speeds up the kinetics of dissociation. Applying advanced models to the relationship between the dissociation rate and applied force reveals new insights into the energy landscape of dissociation.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201701147</identifier><identifier>PMID: 29069529</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Binding Sites ; Computer-Aided Design ; Digoxigenin - chemistry ; energy landscape ; Ligands ; Microscopy, Atomic Force ; protein design ; Proteins ; Proteins - chemistry ; protein–ligand interactions ; single-molecule force spectroscopy ; Spectrum analysis ; Thermodynamics</subject><ispartof>Chemphyschem, 2018-01, Vol.19 (1), p.19-23</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33</citedby><cites>FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33</cites><orcidid>0000-0003-4826-9490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29069529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Patten, William J.</creatorcontrib><creatorcontrib>Walder, Robert</creatorcontrib><creatorcontrib>Adhikari, Ayush</creatorcontrib><creatorcontrib>Okoniewski, Stephen R.</creatorcontrib><creatorcontrib>Ravichandran, Rashmi</creatorcontrib><creatorcontrib>Tinberg, Christine E.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Perkins, Thomas T.</creatorcontrib><title>Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate constant (koff) and the distance to the transition state (Δx≠). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠=6.3±0.2 kcal mol−1) and the shape of the energy barrier at the transition state (linear‐cubic) in addition to the traditional parameters [koff (=4±0.1×10−4 s−1) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein–ligand interactions and, more broadly, the diverse systems studied by AFM‐based force spectroscopy.
Force‐induced unbinding: Applying force to a protein–ligand interaction speeds up the kinetics of dissociation. Applying advanced models to the relationship between the dissociation rate and applied force reveals new insights into the energy landscape of dissociation.</description><subject>Atomic force microscopy</subject><subject>Binding Sites</subject><subject>Computer-Aided Design</subject><subject>Digoxigenin - chemistry</subject><subject>energy landscape</subject><subject>Ligands</subject><subject>Microscopy, Atomic Force</subject><subject>protein design</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>protein–ligand interactions</subject><subject>single-molecule force spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thermodynamics</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAcxSMEYmNw5YgiceHSznZiJ74gobCxSpUYEpwt1_mn9eTYwXY2ettHQOIb7pPgrKUbXDjZ1vv9n5_9suw1RnOMEDlVw0bNCcIVwrisnmTHuCz4rGIlfrrfl6SgR9mLEK4QQjWq8PPsiHDEOCX8OPux6AfvrqHNzz3A3e3PMwt-vc2X0rZByQHyL6O0UXdayaidzRfGjCF6GdPIjY6bXOaN64cx3svSmG3-EYJe26RfehdB27vbX0u9Tob5wkbwUk3ky-xZJ02AV_v1JPt2fva1uZgtP39aNB-WM0URrWay46WiBDDiVNZ1wVW3IowCwQUDxBCRXbHiVV0r0nGSjoBLANLWQFirVkVxkr3f-Q7jqodWgU3hjRi87qXfCie1-FuxeiPW7lrQiqECsWTwbm_g3fcRQhS9DgqMkRbcGATmlCHOeDnd9fYf9MqNPn3KRNUlS_Fxlaj5jlLeheChO4TBSEyliqlUcSg1Dbx5_IQD_qfFBPAdcKMNbP9jJ5rLi-bB_Dd8W7MU</recordid><startdate>20180105</startdate><enddate>20180105</enddate><creator>Van Patten, William J.</creator><creator>Walder, Robert</creator><creator>Adhikari, Ayush</creator><creator>Okoniewski, Stephen R.</creator><creator>Ravichandran, Rashmi</creator><creator>Tinberg, Christine E.</creator><creator>Baker, David</creator><creator>Perkins, Thomas T.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4826-9490</orcidid></search><sort><creationdate>20180105</creationdate><title>Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction</title><author>Van Patten, William J. ; Walder, Robert ; Adhikari, Ayush ; Okoniewski, Stephen R. ; Ravichandran, Rashmi ; Tinberg, Christine E. ; Baker, David ; Perkins, Thomas T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Binding Sites</topic><topic>Computer-Aided Design</topic><topic>Digoxigenin - chemistry</topic><topic>energy landscape</topic><topic>Ligands</topic><topic>Microscopy, Atomic Force</topic><topic>protein design</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>protein–ligand interactions</topic><topic>single-molecule force spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Patten, William J.</creatorcontrib><creatorcontrib>Walder, Robert</creatorcontrib><creatorcontrib>Adhikari, Ayush</creatorcontrib><creatorcontrib>Okoniewski, Stephen R.</creatorcontrib><creatorcontrib>Ravichandran, Rashmi</creatorcontrib><creatorcontrib>Tinberg, Christine E.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Perkins, Thomas T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Patten, William J.</au><au>Walder, Robert</au><au>Adhikari, Ayush</au><au>Okoniewski, Stephen R.</au><au>Ravichandran, Rashmi</au><au>Tinberg, Christine E.</au><au>Baker, David</au><au>Perkins, Thomas T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2018-01-05</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>19</spage><epage>23</epage><pages>19-23</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Quantifying the energy landscape underlying protein–ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single‐molecule technique is atomic force microscopy (AFM)‐based force spectroscopy, which generally yields the zero‐force dissociation rate constant (koff) and the distance to the transition state (Δx≠). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠=6.3±0.2 kcal mol−1) and the shape of the energy barrier at the transition state (linear‐cubic) in addition to the traditional parameters [koff (=4±0.1×10−4 s−1) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein–ligand interactions and, more broadly, the diverse systems studied by AFM‐based force spectroscopy.
Force‐induced unbinding: Applying force to a protein–ligand interaction speeds up the kinetics of dissociation. Applying advanced models to the relationship between the dissociation rate and applied force reveals new insights into the energy landscape of dissociation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29069529</pmid><doi>10.1002/cphc.201701147</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4826-9490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2018-01, Vol.19 (1), p.19-23 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5760306 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Atomic force microscopy Binding Sites Computer-Aided Design Digoxigenin - chemistry energy landscape Ligands Microscopy, Atomic Force protein design Proteins Proteins - chemistry protein–ligand interactions single-molecule force spectroscopy Spectrum analysis Thermodynamics |
title | Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Free%E2%80%90Energy%20Landscape%20Quantification%20Illustrated%20with%20a%20Computationally%20Designed%20Protein%E2%80%93Ligand%20Interaction&rft.jtitle=Chemphyschem&rft.au=Van%E2%80%85Patten,%20William%20J.&rft.date=2018-01-05&rft.volume=19&rft.issue=1&rft.spage=19&rft.epage=23&rft.pages=19-23&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201701147&rft_dat=%3Cproquest_pubme%3E1956096943%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5057-af94c52e1095a8839cfb265e2136e0602af3b9788c2f9202ae14ee2d8e26dcb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984683917&rft_id=info:pmid/29069529&rfr_iscdi=true |