Loading…
Stroke‐induced chronic systolic dysfunction driven by sympathetic overactivity
Objective Cardiac diseases are established risk factors for ischemic stroke incidence and severity. Conversely, there is increasing evidence that brain ischemia can cause cardiac dysfunction. The mechanisms underlying this neurogenic heart disease are incompletely understood. Although it is establis...
Saved in:
Published in: | Annals of neurology 2017-11, Vol.82 (5), p.729-743 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective
Cardiac diseases are established risk factors for ischemic stroke incidence and severity. Conversely, there is increasing evidence that brain ischemia can cause cardiac dysfunction. The mechanisms underlying this neurogenic heart disease are incompletely understood. Although it is established that ischemic stroke is associated with cardiac arrhythmias, myocardial damage, elevated cardiac enzymes, and plasma catecholamines in the acute phase, nothing is known about the delayed consequences of ischemic stroke on cardiovascular function.
Methods
To determine the long‐term cardiac consequences of a focal cerebral ischemia, we subjected young and aged mice to a 30‐minute transient middle cerebral artery occlusion and analyzed cardiac function by serial transthoracic echocardiography and hemodynamic measurements up to week 8 after surgery. Finally, animals were treated with metoprolol to evaluate a pharmacologic treatment option to prevent the development of heart failure.
Results
Focal cerebral ischemia induced a long‐term cardiac dysfunction with a reduction in left ventricular ejection fraction and an increase in left ventricular volumes; this development was associated with higher peripheral sympathetic activity. Metoprolol treatment prevented the development of chronic cardiac dysfunction by decelerating extracellular cardiac remodeling and inhibiting sympathetic signaling relevant to chronic autonomic dysfunction.
Interpretation
Focal cerebral ischemia in mice leads to the development of chronic systolic dysfunction driven by increased sympathetic activity. If these results can be confirmed in a clinical setting, treating physicians should be attentive to clinical signs of heart failure in every patient after ischemic stroke. Therapeutically, the successful β‐blockade with metoprolol in mice could also have future clinical implications. Ann Neurol 2017;82:729–743 |
---|---|
ISSN: | 0364-5134 1531-8249 |
DOI: | 10.1002/ana.25073 |