Loading…

Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS

Biosurfactants (BSs) attract increasing attention as sustainable alternatives to petroleum-derived surfactants. This necessitates structural insight into how BSs interact with proteins encountered by current chemical surfactants. Thus, small-angle x-ray scattering (SAXS) has been used for studying t...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2017-12, Vol.113 (12), p.2621-2633
Main Authors: Mortensen, Henriette Gavlshøj, Madsen, Jens Kvist, Andersen, Kell K., Vosegaard, Thomas, Deen, G. Roshan, Otzen, Daniel E., Pedersen, Jan Skov
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-531eb8b01d5598fe1ecd8b0c8abbcf3f5220f6b95c3f37a541ddb82135e6517b3
cites cdi_FETCH-LOGICAL-c451t-531eb8b01d5598fe1ecd8b0c8abbcf3f5220f6b95c3f37a541ddb82135e6517b3
container_end_page 2633
container_issue 12
container_start_page 2621
container_title Biophysical journal
container_volume 113
creator Mortensen, Henriette Gavlshøj
Madsen, Jens Kvist
Andersen, Kell K.
Vosegaard, Thomas
Deen, G. Roshan
Otzen, Daniel E.
Pedersen, Jan Skov
description Biosurfactants (BSs) attract increasing attention as sustainable alternatives to petroleum-derived surfactants. This necessitates structural insight into how BSs interact with proteins encountered by current chemical surfactants. Thus, small-angle x-ray scattering (SAXS) has been used for studying the structures of complexes made of the proteins α-Lactalbumin (αLA) and myoglobin (Mb) with the biosurfactant rhamnolipid (RL). For comparison, complexes between αLA and the chemical surfactant sodium dodecyl sulfate (SDS) were also investigated. The SAXS data for pure RL micelles can be described by prolate core-shell structures with a core radius of 7.7 Å and a shell thickness of 12 Å, giving an aggregation number of 11. The small core radius is attributed to RL’s complex hydrophobic tail. Data for the αLA-RL complex agree with a 12-molecule micelle with a single protein molecule in the shell. For Mb-RL, the analysis gives complexes of two connected micelles, each containing 10 RL and one protein in the shells. αLA-RL and Mb-RL form surfactant-saturated complexes above 5.6 and 4.7 mM RL, respectively, leaving the remaining RL in free micelles. The SAXS data for SDS agree with oblate-shaped micelles with a core of 20 Å, core eccentricity 0.7, and shell thickness of 5.45 Å, with an aggregation number of 74. The αLA-SDS complexes contain a prolate micelle with a core radius of 11−14 Å and a shell of 8−12 Å with up to 3 αLA per particle and up to 43 SDS per αLA, both considerably larger than for RL. Unlike the RL-protein complexes, the number of surfactant molecules in αLA-SDS complexes increases with surfactant concentration, and saturate at higher surfactant concentrations than αLA-RL complexes. The results highlight how RL and SDS follow similar overall rules of self-assembly and interactions with proteins, but that differences in the strength of protein-surfactant interactions affect the formed structures.
doi_str_mv 10.1016/j.bpj.2017.10.024
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349517311438</els_id><sourcerecordid>1979499670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-531eb8b01d5598fe1ecd8b0c8abbcf3f5220f6b95c3f37a541ddb82135e6517b3</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhS0EokvhAbhBueQmi3_iOBESEiyUIm2FxJZryz-TxisnDnZS6GPxIjwTXm1bwU2vRjP-zhlrDkIvCV4TTOo3-7We9muKicj9GtPqEVoRXtES46Z-jFYY47pkVctP0LOU9hgTyjF5ik5oS2vKuFghe3ETrnzQbizUaIs_v8utMrPyehny6CzEodgNynuIxSYMk4dfkIqfbu6LuYfigwtpid1BMc7Ft14NY_Bucra47NV45HYfd8_Rk075BC9u6yn6fvbpcnNebr9-_rJ5vy1NxclcckZANxoTy3nbdEDA2NyaRmltOtZxSnFX65Yb1jGheEWs1Q0ljEPNidDsFL07-k6LHsAaGOeovJyiG1S8kUE5-f_L6Hp5Fa4lFwK3gmWD17cGMfxYIM1ycMmA92qEsCRJWtFWbVsLnFFyRE0MKUXo7tcQLA_pyL3M6chDOodRTidrXv37v3vFXRwZeHsEIF_p2kGUyTgYDVgXwczSBveA_V9ssaLa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979499670</pqid></control><display><type>article</type><title>Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS</title><source>PubMed Central</source><creator>Mortensen, Henriette Gavlshøj ; Madsen, Jens Kvist ; Andersen, Kell K. ; Vosegaard, Thomas ; Deen, G. Roshan ; Otzen, Daniel E. ; Pedersen, Jan Skov</creator><creatorcontrib>Mortensen, Henriette Gavlshøj ; Madsen, Jens Kvist ; Andersen, Kell K. ; Vosegaard, Thomas ; Deen, G. Roshan ; Otzen, Daniel E. ; Pedersen, Jan Skov</creatorcontrib><description>Biosurfactants (BSs) attract increasing attention as sustainable alternatives to petroleum-derived surfactants. This necessitates structural insight into how BSs interact with proteins encountered by current chemical surfactants. Thus, small-angle x-ray scattering (SAXS) has been used for studying the structures of complexes made of the proteins α-Lactalbumin (αLA) and myoglobin (Mb) with the biosurfactant rhamnolipid (RL). For comparison, complexes between αLA and the chemical surfactant sodium dodecyl sulfate (SDS) were also investigated. The SAXS data for pure RL micelles can be described by prolate core-shell structures with a core radius of 7.7 Å and a shell thickness of 12 Å, giving an aggregation number of 11. The small core radius is attributed to RL’s complex hydrophobic tail. Data for the αLA-RL complex agree with a 12-molecule micelle with a single protein molecule in the shell. For Mb-RL, the analysis gives complexes of two connected micelles, each containing 10 RL and one protein in the shells. αLA-RL and Mb-RL form surfactant-saturated complexes above 5.6 and 4.7 mM RL, respectively, leaving the remaining RL in free micelles. The SAXS data for SDS agree with oblate-shaped micelles with a core of 20 Å, core eccentricity 0.7, and shell thickness of 5.45 Å, with an aggregation number of 74. The αLA-SDS complexes contain a prolate micelle with a core radius of 11−14 Å and a shell of 8−12 Å with up to 3 αLA per particle and up to 43 SDS per αLA, both considerably larger than for RL. Unlike the RL-protein complexes, the number of surfactant molecules in αLA-SDS complexes increases with surfactant concentration, and saturate at higher surfactant concentrations than αLA-RL complexes. The results highlight how RL and SDS follow similar overall rules of self-assembly and interactions with proteins, but that differences in the strength of protein-surfactant interactions affect the formed structures.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2017.10.024</identifier><identifier>PMID: 29262357</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Glycolipids - metabolism ; Lactalbumin - chemistry ; Lactalbumin - metabolism ; Micelles ; Myoglobin - chemistry ; Myoglobin - metabolism ; Protein Binding ; Proteins ; Scattering, Small Angle ; Sodium Dodecyl Sulfate - metabolism ; Surface-Active Agents - metabolism ; X-Ray Diffraction</subject><ispartof>Biophysical journal, 2017-12, Vol.113 (12), p.2621-2633</ispartof><rights>2017 Biophysical Society</rights><rights>Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2017 Biophysical Society. 2017 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-531eb8b01d5598fe1ecd8b0c8abbcf3f5220f6b95c3f37a541ddb82135e6517b3</citedby><cites>FETCH-LOGICAL-c451t-531eb8b01d5598fe1ecd8b0c8abbcf3f5220f6b95c3f37a541ddb82135e6517b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770973/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770973/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29262357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mortensen, Henriette Gavlshøj</creatorcontrib><creatorcontrib>Madsen, Jens Kvist</creatorcontrib><creatorcontrib>Andersen, Kell K.</creatorcontrib><creatorcontrib>Vosegaard, Thomas</creatorcontrib><creatorcontrib>Deen, G. Roshan</creatorcontrib><creatorcontrib>Otzen, Daniel E.</creatorcontrib><creatorcontrib>Pedersen, Jan Skov</creatorcontrib><title>Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Biosurfactants (BSs) attract increasing attention as sustainable alternatives to petroleum-derived surfactants. This necessitates structural insight into how BSs interact with proteins encountered by current chemical surfactants. Thus, small-angle x-ray scattering (SAXS) has been used for studying the structures of complexes made of the proteins α-Lactalbumin (αLA) and myoglobin (Mb) with the biosurfactant rhamnolipid (RL). For comparison, complexes between αLA and the chemical surfactant sodium dodecyl sulfate (SDS) were also investigated. The SAXS data for pure RL micelles can be described by prolate core-shell structures with a core radius of 7.7 Å and a shell thickness of 12 Å, giving an aggregation number of 11. The small core radius is attributed to RL’s complex hydrophobic tail. Data for the αLA-RL complex agree with a 12-molecule micelle with a single protein molecule in the shell. For Mb-RL, the analysis gives complexes of two connected micelles, each containing 10 RL and one protein in the shells. αLA-RL and Mb-RL form surfactant-saturated complexes above 5.6 and 4.7 mM RL, respectively, leaving the remaining RL in free micelles. The SAXS data for SDS agree with oblate-shaped micelles with a core of 20 Å, core eccentricity 0.7, and shell thickness of 5.45 Å, with an aggregation number of 74. The αLA-SDS complexes contain a prolate micelle with a core radius of 11−14 Å and a shell of 8−12 Å with up to 3 αLA per particle and up to 43 SDS per αLA, both considerably larger than for RL. Unlike the RL-protein complexes, the number of surfactant molecules in αLA-SDS complexes increases with surfactant concentration, and saturate at higher surfactant concentrations than αLA-RL complexes. The results highlight how RL and SDS follow similar overall rules of self-assembly and interactions with proteins, but that differences in the strength of protein-surfactant interactions affect the formed structures.</description><subject>Glycolipids - metabolism</subject><subject>Lactalbumin - chemistry</subject><subject>Lactalbumin - metabolism</subject><subject>Micelles</subject><subject>Myoglobin - chemistry</subject><subject>Myoglobin - metabolism</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Scattering, Small Angle</subject><subject>Sodium Dodecyl Sulfate - metabolism</subject><subject>Surface-Active Agents - metabolism</subject><subject>X-Ray Diffraction</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kd1u1DAQhS0EokvhAbhBueQmi3_iOBESEiyUIm2FxJZryz-TxisnDnZS6GPxIjwTXm1bwU2vRjP-zhlrDkIvCV4TTOo3-7We9muKicj9GtPqEVoRXtES46Z-jFYY47pkVctP0LOU9hgTyjF5ik5oS2vKuFghe3ETrnzQbizUaIs_v8utMrPyehny6CzEodgNynuIxSYMk4dfkIqfbu6LuYfigwtpid1BMc7Ft14NY_Bucra47NV45HYfd8_Rk075BC9u6yn6fvbpcnNebr9-_rJ5vy1NxclcckZANxoTy3nbdEDA2NyaRmltOtZxSnFX65Yb1jGheEWs1Q0ljEPNidDsFL07-k6LHsAaGOeovJyiG1S8kUE5-f_L6Hp5Fa4lFwK3gmWD17cGMfxYIM1ycMmA92qEsCRJWtFWbVsLnFFyRE0MKUXo7tcQLA_pyL3M6chDOodRTidrXv37v3vFXRwZeHsEIF_p2kGUyTgYDVgXwczSBveA_V9ssaLa</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Mortensen, Henriette Gavlshøj</creator><creator>Madsen, Jens Kvist</creator><creator>Andersen, Kell K.</creator><creator>Vosegaard, Thomas</creator><creator>Deen, G. Roshan</creator><creator>Otzen, Daniel E.</creator><creator>Pedersen, Jan Skov</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171219</creationdate><title>Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS</title><author>Mortensen, Henriette Gavlshøj ; Madsen, Jens Kvist ; Andersen, Kell K. ; Vosegaard, Thomas ; Deen, G. Roshan ; Otzen, Daniel E. ; Pedersen, Jan Skov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-531eb8b01d5598fe1ecd8b0c8abbcf3f5220f6b95c3f37a541ddb82135e6517b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Glycolipids - metabolism</topic><topic>Lactalbumin - chemistry</topic><topic>Lactalbumin - metabolism</topic><topic>Micelles</topic><topic>Myoglobin - chemistry</topic><topic>Myoglobin - metabolism</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Scattering, Small Angle</topic><topic>Sodium Dodecyl Sulfate - metabolism</topic><topic>Surface-Active Agents - metabolism</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mortensen, Henriette Gavlshøj</creatorcontrib><creatorcontrib>Madsen, Jens Kvist</creatorcontrib><creatorcontrib>Andersen, Kell K.</creatorcontrib><creatorcontrib>Vosegaard, Thomas</creatorcontrib><creatorcontrib>Deen, G. Roshan</creatorcontrib><creatorcontrib>Otzen, Daniel E.</creatorcontrib><creatorcontrib>Pedersen, Jan Skov</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mortensen, Henriette Gavlshøj</au><au>Madsen, Jens Kvist</au><au>Andersen, Kell K.</au><au>Vosegaard, Thomas</au><au>Deen, G. Roshan</au><au>Otzen, Daniel E.</au><au>Pedersen, Jan Skov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>113</volume><issue>12</issue><spage>2621</spage><epage>2633</epage><pages>2621-2633</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Biosurfactants (BSs) attract increasing attention as sustainable alternatives to petroleum-derived surfactants. This necessitates structural insight into how BSs interact with proteins encountered by current chemical surfactants. Thus, small-angle x-ray scattering (SAXS) has been used for studying the structures of complexes made of the proteins α-Lactalbumin (αLA) and myoglobin (Mb) with the biosurfactant rhamnolipid (RL). For comparison, complexes between αLA and the chemical surfactant sodium dodecyl sulfate (SDS) were also investigated. The SAXS data for pure RL micelles can be described by prolate core-shell structures with a core radius of 7.7 Å and a shell thickness of 12 Å, giving an aggregation number of 11. The small core radius is attributed to RL’s complex hydrophobic tail. Data for the αLA-RL complex agree with a 12-molecule micelle with a single protein molecule in the shell. For Mb-RL, the analysis gives complexes of two connected micelles, each containing 10 RL and one protein in the shells. αLA-RL and Mb-RL form surfactant-saturated complexes above 5.6 and 4.7 mM RL, respectively, leaving the remaining RL in free micelles. The SAXS data for SDS agree with oblate-shaped micelles with a core of 20 Å, core eccentricity 0.7, and shell thickness of 5.45 Å, with an aggregation number of 74. The αLA-SDS complexes contain a prolate micelle with a core radius of 11−14 Å and a shell of 8−12 Å with up to 3 αLA per particle and up to 43 SDS per αLA, both considerably larger than for RL. Unlike the RL-protein complexes, the number of surfactant molecules in αLA-SDS complexes increases with surfactant concentration, and saturate at higher surfactant concentrations than αLA-RL complexes. The results highlight how RL and SDS follow similar overall rules of self-assembly and interactions with proteins, but that differences in the strength of protein-surfactant interactions affect the formed structures.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29262357</pmid><doi>10.1016/j.bpj.2017.10.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2017-12, Vol.113 (12), p.2621-2633
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770973
source PubMed Central
subjects Glycolipids - metabolism
Lactalbumin - chemistry
Lactalbumin - metabolism
Micelles
Myoglobin - chemistry
Myoglobin - metabolism
Protein Binding
Proteins
Scattering, Small Angle
Sodium Dodecyl Sulfate - metabolism
Surface-Active Agents - metabolism
X-Ray Diffraction
title Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myoglobin%20and%20%CE%B1-Lactalbumin%20Form%20Smaller%20Complexes%20with%20the%20Biosurfactant%20Rhamnolipid%20Than%20with%20SDS&rft.jtitle=Biophysical%20journal&rft.au=Mortensen,%20Henriette%20Gavlsh%C3%B8j&rft.date=2017-12-19&rft.volume=113&rft.issue=12&rft.spage=2621&rft.epage=2633&rft.pages=2621-2633&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2017.10.024&rft_dat=%3Cproquest_pubme%3E1979499670%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-531eb8b01d5598fe1ecd8b0c8abbcf3f5220f6b95c3f37a541ddb82135e6517b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1979499670&rft_id=info:pmid/29262357&rfr_iscdi=true