Loading…
Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions
METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A...
Saved in:
Published in: | Scientific reports 2018-01, Vol.8 (1), p.1179-12, Article 1179 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c584t-50c9af72fdd19b5cd4b623be94dd6db811f5d5503b7aa727a8725028b7b571023 |
---|---|
cites | cdi_FETCH-LOGICAL-c584t-50c9af72fdd19b5cd4b623be94dd6db811f5d5503b7aa727a8725028b7b571023 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 1179 |
container_title | Scientific reports |
container_volume | 8 |
creator | Shimazu, Tadahiro Furuse, Tamio Balan, Shabeesh Yamada, Ikuko Okuno, Shuzo Iwanari, Hiroko Suzuki, Takehiro Hamakubo, Takao Dohmae, Naoshi Yoshikawa, Takeo Wakana, Shigeharu Shinkai, Yoichi |
description | METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase
in vitro
. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated
Mettl20
knockout (KO) mice to uncover the
in vivo
functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed.
In vitro
enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher β-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when β-oxidation is highly activated. |
doi_str_mv | 10.1038/s41598-018-19615-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5775328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989210159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-50c9af72fdd19b5cd4b623be94dd6db811f5d5503b7aa727a8725028b7b571023</originalsourceid><addsrcrecordid>eNp1kdFuFCEUhomxsU3bF_DCkHjjzSicgQVuTExTq8maJma9JgwwU-osrDDT6Gv5IH0m2d3abE3kBg7n-384-RF6SclbSlr5rjDKlWwIlQ1VC8ob9gydAGG8gRbg-cH5GJ2Xckvq4qAYVS_QMaiWAwA9QePXNHqcevzlcrVaAsEh4uyHeTRTiAO-_92kn8HVIkVsosM33kx4k5Ob7e6u4utgPZ6j8xn3puxkKePvfkqDj8Fim6ILW7icoaPejMWfP-yn6NvHy9XFp2Z5ffX54sOysVyyqeHEKtML6J2jquPWsW4BbecVc27hOklpzx3npO2EMQKEkQI4AdmJjgtKoD1F7_e-m7lbe2d9nLIZ9SaHtcm_dDJBP-3EcKOHdKe5ELwFWQ3ePBjk9GP2ZdLrUKwfRxN9moumSqoFoUxt0df_oLdpzrGOt6OAkppTpWBP2ZxKyb5__Awlepun3uepa556l6dmVfTqcIxHyd_0KtDugVJbcfD54O3_2_4Bml6shg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989210159</pqid></control><display><type>article</type><title>Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shimazu, Tadahiro ; Furuse, Tamio ; Balan, Shabeesh ; Yamada, Ikuko ; Okuno, Shuzo ; Iwanari, Hiroko ; Suzuki, Takehiro ; Hamakubo, Takao ; Dohmae, Naoshi ; Yoshikawa, Takeo ; Wakana, Shigeharu ; Shinkai, Yoichi</creator><creatorcontrib>Shimazu, Tadahiro ; Furuse, Tamio ; Balan, Shabeesh ; Yamada, Ikuko ; Okuno, Shuzo ; Iwanari, Hiroko ; Suzuki, Takehiro ; Hamakubo, Takao ; Dohmae, Naoshi ; Yoshikawa, Takeo ; Wakana, Shigeharu ; Shinkai, Yoichi</creatorcontrib><description>METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase
in vitro
. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated
Mettl20
knockout (KO) mice to uncover the
in vivo
functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed.
In vitro
enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher β-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when β-oxidation is highly activated.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-19615-4</identifier><identifier>PMID: 29352221</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 59 ; 631/337/458/1648 ; 631/45/320 ; 64 ; 64/60 ; 82 ; 82/58 ; 82/80 ; 82/83 ; Animals ; Body temperature ; Catalysis ; Coenzyme A ; Cold tolerance ; Convulsions & seizures ; CRISPR-Cas Systems ; Dehydrogenase ; Dehydrogenases ; Electron transfer ; Electron-Transferring Flavoproteins - metabolism ; Fasting ; Fasting - metabolism ; Fatty Acids - metabolism ; Gene Editing ; Glutaryl-CoA dehydrogenase ; Heat ; High fat diet ; Humanities and Social Sciences ; Humans ; Ketogenesis ; Ketone Bodies - metabolism ; Loss of Function Mutation ; Low carbohydrate diet ; Lysine ; Lysine - metabolism ; Metabolomics - methods ; Methylation ; Methyltransferase ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; multidisciplinary ; Oxidation ; Oxidation-Reduction ; Oxygen Consumption ; Rodents ; Science ; Science (multidisciplinary) ; Substrate Specificity ; Thermogenesis</subject><ispartof>Scientific reports, 2018-01, Vol.8 (1), p.1179-12, Article 1179</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-50c9af72fdd19b5cd4b623be94dd6db811f5d5503b7aa727a8725028b7b571023</citedby><cites>FETCH-LOGICAL-c584t-50c9af72fdd19b5cd4b623be94dd6db811f5d5503b7aa727a8725028b7b571023</cites><orcidid>0000-0002-7037-8354 ; 0000-0002-1098-1290 ; 0000-0003-2288-4428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1989210159/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1989210159?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29352221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimazu, Tadahiro</creatorcontrib><creatorcontrib>Furuse, Tamio</creatorcontrib><creatorcontrib>Balan, Shabeesh</creatorcontrib><creatorcontrib>Yamada, Ikuko</creatorcontrib><creatorcontrib>Okuno, Shuzo</creatorcontrib><creatorcontrib>Iwanari, Hiroko</creatorcontrib><creatorcontrib>Suzuki, Takehiro</creatorcontrib><creatorcontrib>Hamakubo, Takao</creatorcontrib><creatorcontrib>Dohmae, Naoshi</creatorcontrib><creatorcontrib>Yoshikawa, Takeo</creatorcontrib><creatorcontrib>Wakana, Shigeharu</creatorcontrib><creatorcontrib>Shinkai, Yoichi</creatorcontrib><title>Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase
in vitro
. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated
Mettl20
knockout (KO) mice to uncover the
in vivo
functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed.
In vitro
enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher β-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when β-oxidation is highly activated.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>59</subject><subject>631/337/458/1648</subject><subject>631/45/320</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>Animals</subject><subject>Body temperature</subject><subject>Catalysis</subject><subject>Coenzyme A</subject><subject>Cold tolerance</subject><subject>Convulsions & seizures</subject><subject>CRISPR-Cas Systems</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Electron transfer</subject><subject>Electron-Transferring Flavoproteins - metabolism</subject><subject>Fasting</subject><subject>Fasting - metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Editing</subject><subject>Glutaryl-CoA dehydrogenase</subject><subject>Heat</subject><subject>High fat diet</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ketogenesis</subject><subject>Ketone Bodies - metabolism</subject><subject>Loss of Function Mutation</subject><subject>Low carbohydrate diet</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>Metabolomics - methods</subject><subject>Methylation</subject><subject>Methyltransferase</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen Consumption</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrate Specificity</subject><subject>Thermogenesis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kdFuFCEUhomxsU3bF_DCkHjjzSicgQVuTExTq8maJma9JgwwU-osrDDT6Gv5IH0m2d3abE3kBg7n-384-RF6SclbSlr5rjDKlWwIlQ1VC8ob9gydAGG8gRbg-cH5GJ2Xckvq4qAYVS_QMaiWAwA9QePXNHqcevzlcrVaAsEh4uyHeTRTiAO-_92kn8HVIkVsosM33kx4k5Ob7e6u4utgPZ6j8xn3puxkKePvfkqDj8Fim6ILW7icoaPejMWfP-yn6NvHy9XFp2Z5ffX54sOysVyyqeHEKtML6J2jquPWsW4BbecVc27hOklpzx3npO2EMQKEkQI4AdmJjgtKoD1F7_e-m7lbe2d9nLIZ9SaHtcm_dDJBP-3EcKOHdKe5ELwFWQ3ePBjk9GP2ZdLrUKwfRxN9moumSqoFoUxt0df_oLdpzrGOt6OAkppTpWBP2ZxKyb5__Awlepun3uepa556l6dmVfTqcIxHyd_0KtDugVJbcfD54O3_2_4Bml6shg</recordid><startdate>20180119</startdate><enddate>20180119</enddate><creator>Shimazu, Tadahiro</creator><creator>Furuse, Tamio</creator><creator>Balan, Shabeesh</creator><creator>Yamada, Ikuko</creator><creator>Okuno, Shuzo</creator><creator>Iwanari, Hiroko</creator><creator>Suzuki, Takehiro</creator><creator>Hamakubo, Takao</creator><creator>Dohmae, Naoshi</creator><creator>Yoshikawa, Takeo</creator><creator>Wakana, Shigeharu</creator><creator>Shinkai, Yoichi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7037-8354</orcidid><orcidid>https://orcid.org/0000-0002-1098-1290</orcidid><orcidid>https://orcid.org/0000-0003-2288-4428</orcidid></search><sort><creationdate>20180119</creationdate><title>Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions</title><author>Shimazu, Tadahiro ; Furuse, Tamio ; Balan, Shabeesh ; Yamada, Ikuko ; Okuno, Shuzo ; Iwanari, Hiroko ; Suzuki, Takehiro ; Hamakubo, Takao ; Dohmae, Naoshi ; Yoshikawa, Takeo ; Wakana, Shigeharu ; Shinkai, Yoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-50c9af72fdd19b5cd4b623be94dd6db811f5d5503b7aa727a8725028b7b571023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>59</topic><topic>631/337/458/1648</topic><topic>631/45/320</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>Animals</topic><topic>Body temperature</topic><topic>Catalysis</topic><topic>Coenzyme A</topic><topic>Cold tolerance</topic><topic>Convulsions & seizures</topic><topic>CRISPR-Cas Systems</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Electron transfer</topic><topic>Electron-Transferring Flavoproteins - metabolism</topic><topic>Fasting</topic><topic>Fasting - metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Editing</topic><topic>Glutaryl-CoA dehydrogenase</topic><topic>Heat</topic><topic>High fat diet</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ketogenesis</topic><topic>Ketone Bodies - metabolism</topic><topic>Loss of Function Mutation</topic><topic>Low carbohydrate diet</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>Metabolomics - methods</topic><topic>Methylation</topic><topic>Methyltransferase</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen Consumption</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrate Specificity</topic><topic>Thermogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimazu, Tadahiro</creatorcontrib><creatorcontrib>Furuse, Tamio</creatorcontrib><creatorcontrib>Balan, Shabeesh</creatorcontrib><creatorcontrib>Yamada, Ikuko</creatorcontrib><creatorcontrib>Okuno, Shuzo</creatorcontrib><creatorcontrib>Iwanari, Hiroko</creatorcontrib><creatorcontrib>Suzuki, Takehiro</creatorcontrib><creatorcontrib>Hamakubo, Takao</creatorcontrib><creatorcontrib>Dohmae, Naoshi</creatorcontrib><creatorcontrib>Yoshikawa, Takeo</creatorcontrib><creatorcontrib>Wakana, Shigeharu</creatorcontrib><creatorcontrib>Shinkai, Yoichi</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimazu, Tadahiro</au><au>Furuse, Tamio</au><au>Balan, Shabeesh</au><au>Yamada, Ikuko</au><au>Okuno, Shuzo</au><au>Iwanari, Hiroko</au><au>Suzuki, Takehiro</au><au>Hamakubo, Takao</au><au>Dohmae, Naoshi</au><au>Yoshikawa, Takeo</au><au>Wakana, Shigeharu</au><au>Shinkai, Yoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-01-19</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>1179</spage><epage>12</epage><pages>1179-12</pages><artnum>1179</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase
in vitro
. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated
Mettl20
knockout (KO) mice to uncover the
in vivo
functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed.
In vitro
enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher β-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when β-oxidation is highly activated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29352221</pmid><doi>10.1038/s41598-018-19615-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7037-8354</orcidid><orcidid>https://orcid.org/0000-0002-1098-1290</orcidid><orcidid>https://orcid.org/0000-0003-2288-4428</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-01, Vol.8 (1), p.1179-12, Article 1179 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5775328 |
source | Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/106 13/109 59 631/337/458/1648 631/45/320 64 64/60 82 82/58 82/80 82/83 Animals Body temperature Catalysis Coenzyme A Cold tolerance Convulsions & seizures CRISPR-Cas Systems Dehydrogenase Dehydrogenases Electron transfer Electron-Transferring Flavoproteins - metabolism Fasting Fasting - metabolism Fatty Acids - metabolism Gene Editing Glutaryl-CoA dehydrogenase Heat High fat diet Humanities and Social Sciences Humans Ketogenesis Ketone Bodies - metabolism Loss of Function Mutation Low carbohydrate diet Lysine Lysine - metabolism Metabolomics - methods Methylation Methyltransferase Methyltransferases - genetics Methyltransferases - metabolism Mice Mice, Knockout Mitochondria Mitochondria - metabolism multidisciplinary Oxidation Oxidation-Reduction Oxygen Consumption Rodents Science Science (multidisciplinary) Substrate Specificity Thermogenesis |
title | Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20METTL20%20in%20regulating%20%CE%B2-oxidation%20and%20heat%20production%20in%20mice%20under%20fasting%20or%20ketogenic%20conditions&rft.jtitle=Scientific%20reports&rft.au=Shimazu,%20Tadahiro&rft.date=2018-01-19&rft.volume=8&rft.issue=1&rft.spage=1179&rft.epage=12&rft.pages=1179-12&rft.artnum=1179&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-19615-4&rft_dat=%3Cproquest_pubme%3E1989210159%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c584t-50c9af72fdd19b5cd4b623be94dd6db811f5d5503b7aa727a8725028b7b571023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989210159&rft_id=info:pmid/29352221&rfr_iscdi=true |