Loading…

Calcium Taste Avoidance in Drosophila

Many animals, ranging from vinegar flies to humans, discriminate a wide range of tastants, including sugars, bitter compounds, NaCl, and sour. However, the taste of Ca2+ is poorly understood, and it is unclear whether animals such as Drosophila melanogaster are endowed with this sense. Here, we exam...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2018-01, Vol.97 (1), p.67-74.e4
Main Authors: Lee, Youngseok, Poudel, Seeta, Kim, Yunjung, Thakur, Dhananjay, Montell, Craig
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-dc33a43cac26c3ae6f2d3062d6098e64ed7ba5cbdfde045857b76d519f2c323f3
cites cdi_FETCH-LOGICAL-c491t-dc33a43cac26c3ae6f2d3062d6098e64ed7ba5cbdfde045857b76d519f2c323f3
container_end_page 74.e4
container_issue 1
container_start_page 67
container_title Neuron (Cambridge, Mass.)
container_volume 97
creator Lee, Youngseok
Poudel, Seeta
Kim, Yunjung
Thakur, Dhananjay
Montell, Craig
description Many animals, ranging from vinegar flies to humans, discriminate a wide range of tastants, including sugars, bitter compounds, NaCl, and sour. However, the taste of Ca2+ is poorly understood, and it is unclear whether animals such as Drosophila melanogaster are endowed with this sense. Here, we examined Ca2+ taste in Drosophila and showed that high levels of Ca2+ are aversive. The repulsion was mediated by two mechanisms—activation of a specific class of gustatory receptor neurons (GRNs), which suppresses feeding and inhibition of sugar-activated GRNs, which normally stimulates feeding. The distaste for Ca2+, and Ca2+-activated action potentials required several members of the variant ionotropic receptor (IR) family (IR25a, IR62a, and IR76b). Consistent with the Ca2+ rejection, we found that high concentrations of Ca2+ decreased survival. We conclude that gustatory detection of Ca2+ represents an additional sense of taste in Drosophila and is required for avoiding toxic levels of this mineral. •Vinegar flies taste Ca2+ and reject foods that contain high levels•Ca2+ suppresses feeding through opposing effects on two classes of taste neurons•Members of the ionotropic receptor (IR) family are required for sensing Ca2+ in food•Flies taste and avoid foods with high levels of Ca2+ to avoid Ca2+ toxicity Lee et al. establish flies as a model to characterize calcium taste. They show that high calcium is aversive, identify taste neurons and receptors required for calcium avoidance, and demonstrate that avoidance of foods with excessive calcium promotes survival.
doi_str_mv 10.1016/j.neuron.2017.11.038
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317310917</els_id><sourcerecordid>2007528984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-dc33a43cac26c3ae6f2d3062d6098e64ed7ba5cbdfde045857b76d519f2c323f3</originalsourceid><addsrcrecordid>eNp9kFtLwzAUx4Mobk6_gUhBfGzNrUnzIox5hYEv8zmkSepSumam7cBvb8bm1BefzsM5_8v5AXCJYIYgYrd11toh-DbDEPEMoQyS4giMERQ8pUiIYzCGhWApw5yMwFnX1RAimgt0CkZYYM5gzsbgZqYa7YZVslBdb5PpxjujWm0T1yb3wXd-vXSNOgcnlWo6e7GfE_D2-LCYPafz16eX2XSeaipQnxpNiKJEK42ZJsqyChsCGTYMisIyag0vVa5LUxkLaV7kvOTM5EhUWBNMKjIBdzvf9VCurNG27YNq5Dq4lQqf0isn_25at5TvfiNzzjkWRTS43hsE_zHYrpe1H0IbO0sMIc9xIQoar-juSscPu2CrQwKCcgtX1nIHV27hSoRkhBtlV7_bHUTfNH_q28ho42yQnXY20jQuWN1L493_CV8TSY1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007528984</pqid></control><display><type>article</type><title>Calcium Taste Avoidance in Drosophila</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Lee, Youngseok ; Poudel, Seeta ; Kim, Yunjung ; Thakur, Dhananjay ; Montell, Craig</creator><creatorcontrib>Lee, Youngseok ; Poudel, Seeta ; Kim, Yunjung ; Thakur, Dhananjay ; Montell, Craig</creatorcontrib><description>Many animals, ranging from vinegar flies to humans, discriminate a wide range of tastants, including sugars, bitter compounds, NaCl, and sour. However, the taste of Ca2+ is poorly understood, and it is unclear whether animals such as Drosophila melanogaster are endowed with this sense. Here, we examined Ca2+ taste in Drosophila and showed that high levels of Ca2+ are aversive. The repulsion was mediated by two mechanisms—activation of a specific class of gustatory receptor neurons (GRNs), which suppresses feeding and inhibition of sugar-activated GRNs, which normally stimulates feeding. The distaste for Ca2+, and Ca2+-activated action potentials required several members of the variant ionotropic receptor (IR) family (IR25a, IR62a, and IR76b). Consistent with the Ca2+ rejection, we found that high concentrations of Ca2+ decreased survival. We conclude that gustatory detection of Ca2+ represents an additional sense of taste in Drosophila and is required for avoiding toxic levels of this mineral. •Vinegar flies taste Ca2+ and reject foods that contain high levels•Ca2+ suppresses feeding through opposing effects on two classes of taste neurons•Members of the ionotropic receptor (IR) family are required for sensing Ca2+ in food•Flies taste and avoid foods with high levels of Ca2+ to avoid Ca2+ toxicity Lee et al. establish flies as a model to characterize calcium taste. They show that high calcium is aversive, identify taste neurons and receptors required for calcium avoidance, and demonstrate that avoidance of foods with excessive calcium promotes survival.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.11.038</identifier><identifier>PMID: 29276056</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Behavior ; Bitter taste ; Calcium ; chemoreceptor ; Drosophila ; Drosophila melanogaster - physiology ; Drosophila Proteins - metabolism ; Feeding ; Feeding Behavior - physiology ; Food ; gustatory ; Insects ; ionotropic receptor ; labellum ; Mammals ; Neurons ; PPK23 ; Preferences ; Receptors, Ionotropic Glutamate - metabolism ; Sodium chloride ; Sour taste ; Sucrose ; Sugar ; Tastants ; Taste ; Taste Perception - physiology ; Taste receptors</subject><ispartof>Neuron (Cambridge, Mass.), 2018-01, Vol.97 (1), p.67-74.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-dc33a43cac26c3ae6f2d3062d6098e64ed7ba5cbdfde045857b76d519f2c323f3</citedby><cites>FETCH-LOGICAL-c491t-dc33a43cac26c3ae6f2d3062d6098e64ed7ba5cbdfde045857b76d519f2c323f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29276056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Youngseok</creatorcontrib><creatorcontrib>Poudel, Seeta</creatorcontrib><creatorcontrib>Kim, Yunjung</creatorcontrib><creatorcontrib>Thakur, Dhananjay</creatorcontrib><creatorcontrib>Montell, Craig</creatorcontrib><title>Calcium Taste Avoidance in Drosophila</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Many animals, ranging from vinegar flies to humans, discriminate a wide range of tastants, including sugars, bitter compounds, NaCl, and sour. However, the taste of Ca2+ is poorly understood, and it is unclear whether animals such as Drosophila melanogaster are endowed with this sense. Here, we examined Ca2+ taste in Drosophila and showed that high levels of Ca2+ are aversive. The repulsion was mediated by two mechanisms—activation of a specific class of gustatory receptor neurons (GRNs), which suppresses feeding and inhibition of sugar-activated GRNs, which normally stimulates feeding. The distaste for Ca2+, and Ca2+-activated action potentials required several members of the variant ionotropic receptor (IR) family (IR25a, IR62a, and IR76b). Consistent with the Ca2+ rejection, we found that high concentrations of Ca2+ decreased survival. We conclude that gustatory detection of Ca2+ represents an additional sense of taste in Drosophila and is required for avoiding toxic levels of this mineral. •Vinegar flies taste Ca2+ and reject foods that contain high levels•Ca2+ suppresses feeding through opposing effects on two classes of taste neurons•Members of the ionotropic receptor (IR) family are required for sensing Ca2+ in food•Flies taste and avoid foods with high levels of Ca2+ to avoid Ca2+ toxicity Lee et al. establish flies as a model to characterize calcium taste. They show that high calcium is aversive, identify taste neurons and receptors required for calcium avoidance, and demonstrate that avoidance of foods with excessive calcium promotes survival.</description><subject>Animals</subject><subject>Behavior</subject><subject>Bitter taste</subject><subject>Calcium</subject><subject>chemoreceptor</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - metabolism</subject><subject>Feeding</subject><subject>Feeding Behavior - physiology</subject><subject>Food</subject><subject>gustatory</subject><subject>Insects</subject><subject>ionotropic receptor</subject><subject>labellum</subject><subject>Mammals</subject><subject>Neurons</subject><subject>PPK23</subject><subject>Preferences</subject><subject>Receptors, Ionotropic Glutamate - metabolism</subject><subject>Sodium chloride</subject><subject>Sour taste</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Tastants</subject><subject>Taste</subject><subject>Taste Perception - physiology</subject><subject>Taste receptors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLwzAUx4Mobk6_gUhBfGzNrUnzIox5hYEv8zmkSepSumam7cBvb8bm1BefzsM5_8v5AXCJYIYgYrd11toh-DbDEPEMoQyS4giMERQ8pUiIYzCGhWApw5yMwFnX1RAimgt0CkZYYM5gzsbgZqYa7YZVslBdb5PpxjujWm0T1yb3wXd-vXSNOgcnlWo6e7GfE_D2-LCYPafz16eX2XSeaipQnxpNiKJEK42ZJsqyChsCGTYMisIyag0vVa5LUxkLaV7kvOTM5EhUWBNMKjIBdzvf9VCurNG27YNq5Dq4lQqf0isn_25at5TvfiNzzjkWRTS43hsE_zHYrpe1H0IbO0sMIc9xIQoar-juSscPu2CrQwKCcgtX1nIHV27hSoRkhBtlV7_bHUTfNH_q28ho42yQnXY20jQuWN1L493_CV8TSY1A</recordid><startdate>20180103</startdate><enddate>20180103</enddate><creator>Lee, Youngseok</creator><creator>Poudel, Seeta</creator><creator>Kim, Yunjung</creator><creator>Thakur, Dhananjay</creator><creator>Montell, Craig</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20180103</creationdate><title>Calcium Taste Avoidance in Drosophila</title><author>Lee, Youngseok ; Poudel, Seeta ; Kim, Yunjung ; Thakur, Dhananjay ; Montell, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-dc33a43cac26c3ae6f2d3062d6098e64ed7ba5cbdfde045857b76d519f2c323f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Bitter taste</topic><topic>Calcium</topic><topic>chemoreceptor</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - metabolism</topic><topic>Feeding</topic><topic>Feeding Behavior - physiology</topic><topic>Food</topic><topic>gustatory</topic><topic>Insects</topic><topic>ionotropic receptor</topic><topic>labellum</topic><topic>Mammals</topic><topic>Neurons</topic><topic>PPK23</topic><topic>Preferences</topic><topic>Receptors, Ionotropic Glutamate - metabolism</topic><topic>Sodium chloride</topic><topic>Sour taste</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Tastants</topic><topic>Taste</topic><topic>Taste Perception - physiology</topic><topic>Taste receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Youngseok</creatorcontrib><creatorcontrib>Poudel, Seeta</creatorcontrib><creatorcontrib>Kim, Yunjung</creatorcontrib><creatorcontrib>Thakur, Dhananjay</creatorcontrib><creatorcontrib>Montell, Craig</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Youngseok</au><au>Poudel, Seeta</au><au>Kim, Yunjung</au><au>Thakur, Dhananjay</au><au>Montell, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium Taste Avoidance in Drosophila</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-01-03</date><risdate>2018</risdate><volume>97</volume><issue>1</issue><spage>67</spage><epage>74.e4</epage><pages>67-74.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Many animals, ranging from vinegar flies to humans, discriminate a wide range of tastants, including sugars, bitter compounds, NaCl, and sour. However, the taste of Ca2+ is poorly understood, and it is unclear whether animals such as Drosophila melanogaster are endowed with this sense. Here, we examined Ca2+ taste in Drosophila and showed that high levels of Ca2+ are aversive. The repulsion was mediated by two mechanisms—activation of a specific class of gustatory receptor neurons (GRNs), which suppresses feeding and inhibition of sugar-activated GRNs, which normally stimulates feeding. The distaste for Ca2+, and Ca2+-activated action potentials required several members of the variant ionotropic receptor (IR) family (IR25a, IR62a, and IR76b). Consistent with the Ca2+ rejection, we found that high concentrations of Ca2+ decreased survival. We conclude that gustatory detection of Ca2+ represents an additional sense of taste in Drosophila and is required for avoiding toxic levels of this mineral. •Vinegar flies taste Ca2+ and reject foods that contain high levels•Ca2+ suppresses feeding through opposing effects on two classes of taste neurons•Members of the ionotropic receptor (IR) family are required for sensing Ca2+ in food•Flies taste and avoid foods with high levels of Ca2+ to avoid Ca2+ toxicity Lee et al. establish flies as a model to characterize calcium taste. They show that high calcium is aversive, identify taste neurons and receptors required for calcium avoidance, and demonstrate that avoidance of foods with excessive calcium promotes survival.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29276056</pmid><doi>10.1016/j.neuron.2017.11.038</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2018-01, Vol.97 (1), p.67-74.e4
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777298
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Behavior
Bitter taste
Calcium
chemoreceptor
Drosophila
Drosophila melanogaster - physiology
Drosophila Proteins - metabolism
Feeding
Feeding Behavior - physiology
Food
gustatory
Insects
ionotropic receptor
labellum
Mammals
Neurons
PPK23
Preferences
Receptors, Ionotropic Glutamate - metabolism
Sodium chloride
Sour taste
Sucrose
Sugar
Tastants
Taste
Taste Perception - physiology
Taste receptors
title Calcium Taste Avoidance in Drosophila
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20Taste%20Avoidance%20in%20Drosophila&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Lee,%20Youngseok&rft.date=2018-01-03&rft.volume=97&rft.issue=1&rft.spage=67&rft.epage=74.e4&rft.pages=67-74.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.11.038&rft_dat=%3Cproquest_pubme%3E2007528984%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-dc33a43cac26c3ae6f2d3062d6098e64ed7ba5cbdfde045857b76d519f2c323f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2007528984&rft_id=info:pmid/29276056&rfr_iscdi=true