Loading…
A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders
The X-chromosome harbors hundreds of disease genes whose associated diseases predominantly affect males. However, a subset, including neurodevelopmental disorders, Rett syndrome (RTT), fragile X syndrome, and CDKL5 syndrome, also affects females. These disorders lack disease-specific treatment. Beca...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (4), p.E668-E675 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The X-chromosome harbors hundreds of disease genes whose associated diseases predominantly affect males. However, a subset, including neurodevelopmental disorders, Rett syndrome (RTT), fragile X syndrome, and CDKL5 syndrome, also affects females. These disorders lack disease-specific treatment. Because female cells carry two X chromosomes, an emerging treatment strategy has been to reawaken the healthy allele on the inactive X (Xi). Here, we focus on methyl-CpG binding protein 2 (MECP2) restoration for RTT and combinatorially target factors in the interactome of Xist, the noncoding RNA responsible for X inactivation. We identify a mixed modality approach combining an Xist antisense oligonucleotide and a small-molecule inhibitor of DNA methylation, which, together, achieve 30,000-fold MECP2 up-regulation from the Xi in cultured cells. Combining a brain-specific genetic Xist ablation with short-term 5-aza-2′-deoxycytidine (Aza) treatment models the synergy in vivo without evident toxicity. The Xi is selectively reactivated. These experiments provide proof of concept for a mixed modality approach for treating X-linked disorders in females. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1715124115 |