Loading…

Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation

Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current meth...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (4), p.720-725
Main Authors: Liu, Chiu-Ping, Tsai, Tsung-I., Cheng, Ting, Shivatare, Vidya S., Wu, Chung-Yi, Wong, Chi-Huey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93
cites cdi_FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93
container_end_page 725
container_issue 4
container_start_page 720
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Liu, Chiu-Ping
Tsai, Tsung-I.
Cheng, Ting
Shivatare, Vidya S.
Wu, Chung-Yi
Wong, Chi-Huey
description Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates.
doi_str_mv 10.1073/pnas.1718172115
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5789950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26506460</jstor_id><sourcerecordid>26506460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhzAlkiUs5pB07dmxfkFAFLVIlLnC2nMTOepW1g-1UpL--WW1pgdNo9L55mqeH0FsC5wREfTEFk8-JIJIISgh_hjYEFKkapuA52gBQUUlG2Ql6lfMOABSX8BKdUFUTQhXbIHc1Ll20YfDB2uTDgKPDJhTfxn7BZ9c2dXYqPnzEZZviPGzxYk0u2P6eks3Zx7DSPfYB3_qSIrbhbtmb4js8HIzzMq5LDK_RC2fGbN88zFP08-uXH5fX1c33q2-Xn2-qjoMqlTJWyFY4y7vWGCl6yYhzYKDpO0ZrVvcMjIPe8bqlpLWUABPGSlo7YLJV9Sn6dPSd5nZv-86Gksyop-T3Ji06Gq__VYLf6iHeai6kUhxWg7MHgxR_zTYXvfe5s-Nogo1z1kRJxTml6oB--A_dxTmFNZ6mAAJkU7NmpS6OVJdizsm6x2cI6EOH-tChfupwvXj_d4ZH_k9pK_DuCOxyielJbzg0rIH6HkfgpLE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007086346</pqid></control><display><type>article</type><title>Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Liu, Chiu-Ping ; Tsai, Tsung-I. ; Cheng, Ting ; Shivatare, Vidya S. ; Wu, Chung-Yi ; Wong, Chi-Huey</creator><creatorcontrib>Liu, Chiu-Ping ; Tsai, Tsung-I. ; Cheng, Ting ; Shivatare, Vidya S. ; Wu, Chung-Yi ; Wong, Chi-Huey</creatorcontrib><description>Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1718172115</identifier><identifier>PMID: 29311294</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cancer ; Carbohydrates ; Cells ; Deglycosylation ; Effector cells ; Enzymes ; Glycosylation ; Infectious diseases ; Medical treatment ; Monoclonal antibodies ; Polysaccharides ; Substrates ; Targeted cancer therapy ; Trastuzumab ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (4), p.720-725</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 23, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93</citedby><cites>FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26506460$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26506460$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29311294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chiu-Ping</creatorcontrib><creatorcontrib>Tsai, Tsung-I.</creatorcontrib><creatorcontrib>Cheng, Ting</creatorcontrib><creatorcontrib>Shivatare, Vidya S.</creatorcontrib><creatorcontrib>Wu, Chung-Yi</creatorcontrib><creatorcontrib>Wong, Chi-Huey</creatorcontrib><title>Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates.</description><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Carbohydrates</subject><subject>Cells</subject><subject>Deglycosylation</subject><subject>Effector cells</subject><subject>Enzymes</subject><subject>Glycosylation</subject><subject>Infectious diseases</subject><subject>Medical treatment</subject><subject>Monoclonal antibodies</subject><subject>Polysaccharides</subject><subject>Substrates</subject><subject>Targeted cancer therapy</subject><subject>Trastuzumab</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EokvhzAlkiUs5pB07dmxfkFAFLVIlLnC2nMTOepW1g-1UpL--WW1pgdNo9L55mqeH0FsC5wREfTEFk8-JIJIISgh_hjYEFKkapuA52gBQUUlG2Ql6lfMOABSX8BKdUFUTQhXbIHc1Ll20YfDB2uTDgKPDJhTfxn7BZ9c2dXYqPnzEZZviPGzxYk0u2P6eks3Zx7DSPfYB3_qSIrbhbtmb4js8HIzzMq5LDK_RC2fGbN88zFP08-uXH5fX1c33q2-Xn2-qjoMqlTJWyFY4y7vWGCl6yYhzYKDpO0ZrVvcMjIPe8bqlpLWUABPGSlo7YLJV9Sn6dPSd5nZv-86Gksyop-T3Ji06Gq__VYLf6iHeai6kUhxWg7MHgxR_zTYXvfe5s-Nogo1z1kRJxTml6oB--A_dxTmFNZ6mAAJkU7NmpS6OVJdizsm6x2cI6EOH-tChfupwvXj_d4ZH_k9pK_DuCOxyielJbzg0rIH6HkfgpLE</recordid><startdate>20180123</startdate><enddate>20180123</enddate><creator>Liu, Chiu-Ping</creator><creator>Tsai, Tsung-I.</creator><creator>Cheng, Ting</creator><creator>Shivatare, Vidya S.</creator><creator>Wu, Chung-Yi</creator><creator>Wong, Chi-Huey</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180123</creationdate><title>Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation</title><author>Liu, Chiu-Ping ; Tsai, Tsung-I. ; Cheng, Ting ; Shivatare, Vidya S. ; Wu, Chung-Yi ; Wong, Chi-Huey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Carbohydrates</topic><topic>Cells</topic><topic>Deglycosylation</topic><topic>Effector cells</topic><topic>Enzymes</topic><topic>Glycosylation</topic><topic>Infectious diseases</topic><topic>Medical treatment</topic><topic>Monoclonal antibodies</topic><topic>Polysaccharides</topic><topic>Substrates</topic><topic>Targeted cancer therapy</topic><topic>Trastuzumab</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chiu-Ping</creatorcontrib><creatorcontrib>Tsai, Tsung-I.</creatorcontrib><creatorcontrib>Cheng, Ting</creatorcontrib><creatorcontrib>Shivatare, Vidya S.</creatorcontrib><creatorcontrib>Wu, Chung-Yi</creatorcontrib><creatorcontrib>Wong, Chi-Huey</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chiu-Ping</au><au>Tsai, Tsung-I.</au><au>Cheng, Ting</au><au>Shivatare, Vidya S.</au><au>Wu, Chung-Yi</au><au>Wong, Chi-Huey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-23</date><risdate>2018</risdate><volume>115</volume><issue>4</issue><spage>720</spage><epage>725</epage><pages>720-725</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29311294</pmid><doi>10.1073/pnas.1718172115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (4), p.720-725
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5789950
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Biological Sciences
Cancer
Carbohydrates
Cells
Deglycosylation
Effector cells
Enzymes
Glycosylation
Infectious diseases
Medical treatment
Monoclonal antibodies
Polysaccharides
Substrates
Targeted cancer therapy
Trastuzumab
Yeast
title Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycoengineering%20of%20antibody%20(Herceptin)%20through%20yeast%20expression%20and%20in%20vitro%20enzymatic%20glycosylation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Chiu-Ping&rft.date=2018-01-23&rft.volume=115&rft.issue=4&rft.spage=720&rft.epage=725&rft.pages=720-725&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1718172115&rft_dat=%3Cjstor_pubme%3E26506460%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2007086346&rft_id=info:pmid/29311294&rft_jstor_id=26506460&rfr_iscdi=true