Loading…
Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation
Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current meth...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (4), p.720-725 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93 |
container_end_page | 725 |
container_issue | 4 |
container_start_page | 720 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Liu, Chiu-Ping Tsai, Tsung-I. Cheng, Ting Shivatare, Vidya S. Wu, Chung-Yi Wong, Chi-Huey |
description | Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates. |
doi_str_mv | 10.1073/pnas.1718172115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5789950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26506460</jstor_id><sourcerecordid>26506460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhzAlkiUs5pB07dmxfkFAFLVIlLnC2nMTOepW1g-1UpL--WW1pgdNo9L55mqeH0FsC5wREfTEFk8-JIJIISgh_hjYEFKkapuA52gBQUUlG2Ql6lfMOABSX8BKdUFUTQhXbIHc1Ll20YfDB2uTDgKPDJhTfxn7BZ9c2dXYqPnzEZZviPGzxYk0u2P6eks3Zx7DSPfYB3_qSIrbhbtmb4js8HIzzMq5LDK_RC2fGbN88zFP08-uXH5fX1c33q2-Xn2-qjoMqlTJWyFY4y7vWGCl6yYhzYKDpO0ZrVvcMjIPe8bqlpLWUABPGSlo7YLJV9Sn6dPSd5nZv-86Gksyop-T3Ji06Gq__VYLf6iHeai6kUhxWg7MHgxR_zTYXvfe5s-Nogo1z1kRJxTml6oB--A_dxTmFNZ6mAAJkU7NmpS6OVJdizsm6x2cI6EOH-tChfupwvXj_d4ZH_k9pK_DuCOxyielJbzg0rIH6HkfgpLE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007086346</pqid></control><display><type>article</type><title>Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Liu, Chiu-Ping ; Tsai, Tsung-I. ; Cheng, Ting ; Shivatare, Vidya S. ; Wu, Chung-Yi ; Wong, Chi-Huey</creator><creatorcontrib>Liu, Chiu-Ping ; Tsai, Tsung-I. ; Cheng, Ting ; Shivatare, Vidya S. ; Wu, Chung-Yi ; Wong, Chi-Huey</creatorcontrib><description>Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1718172115</identifier><identifier>PMID: 29311294</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cancer ; Carbohydrates ; Cells ; Deglycosylation ; Effector cells ; Enzymes ; Glycosylation ; Infectious diseases ; Medical treatment ; Monoclonal antibodies ; Polysaccharides ; Substrates ; Targeted cancer therapy ; Trastuzumab ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (4), p.720-725</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 23, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93</citedby><cites>FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26506460$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26506460$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29311294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chiu-Ping</creatorcontrib><creatorcontrib>Tsai, Tsung-I.</creatorcontrib><creatorcontrib>Cheng, Ting</creatorcontrib><creatorcontrib>Shivatare, Vidya S.</creatorcontrib><creatorcontrib>Wu, Chung-Yi</creatorcontrib><creatorcontrib>Wong, Chi-Huey</creatorcontrib><title>Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates.</description><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Carbohydrates</subject><subject>Cells</subject><subject>Deglycosylation</subject><subject>Effector cells</subject><subject>Enzymes</subject><subject>Glycosylation</subject><subject>Infectious diseases</subject><subject>Medical treatment</subject><subject>Monoclonal antibodies</subject><subject>Polysaccharides</subject><subject>Substrates</subject><subject>Targeted cancer therapy</subject><subject>Trastuzumab</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EokvhzAlkiUs5pB07dmxfkFAFLVIlLnC2nMTOepW1g-1UpL--WW1pgdNo9L55mqeH0FsC5wREfTEFk8-JIJIISgh_hjYEFKkapuA52gBQUUlG2Ql6lfMOABSX8BKdUFUTQhXbIHc1Ll20YfDB2uTDgKPDJhTfxn7BZ9c2dXYqPnzEZZviPGzxYk0u2P6eks3Zx7DSPfYB3_qSIrbhbtmb4js8HIzzMq5LDK_RC2fGbN88zFP08-uXH5fX1c33q2-Xn2-qjoMqlTJWyFY4y7vWGCl6yYhzYKDpO0ZrVvcMjIPe8bqlpLWUABPGSlo7YLJV9Sn6dPSd5nZv-86Gksyop-T3Ji06Gq__VYLf6iHeai6kUhxWg7MHgxR_zTYXvfe5s-Nogo1z1kRJxTml6oB--A_dxTmFNZ6mAAJkU7NmpS6OVJdizsm6x2cI6EOH-tChfupwvXj_d4ZH_k9pK_DuCOxyielJbzg0rIH6HkfgpLE</recordid><startdate>20180123</startdate><enddate>20180123</enddate><creator>Liu, Chiu-Ping</creator><creator>Tsai, Tsung-I.</creator><creator>Cheng, Ting</creator><creator>Shivatare, Vidya S.</creator><creator>Wu, Chung-Yi</creator><creator>Wong, Chi-Huey</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180123</creationdate><title>Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation</title><author>Liu, Chiu-Ping ; Tsai, Tsung-I. ; Cheng, Ting ; Shivatare, Vidya S. ; Wu, Chung-Yi ; Wong, Chi-Huey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Carbohydrates</topic><topic>Cells</topic><topic>Deglycosylation</topic><topic>Effector cells</topic><topic>Enzymes</topic><topic>Glycosylation</topic><topic>Infectious diseases</topic><topic>Medical treatment</topic><topic>Monoclonal antibodies</topic><topic>Polysaccharides</topic><topic>Substrates</topic><topic>Targeted cancer therapy</topic><topic>Trastuzumab</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chiu-Ping</creatorcontrib><creatorcontrib>Tsai, Tsung-I.</creatorcontrib><creatorcontrib>Cheng, Ting</creatorcontrib><creatorcontrib>Shivatare, Vidya S.</creatorcontrib><creatorcontrib>Wu, Chung-Yi</creatorcontrib><creatorcontrib>Wong, Chi-Huey</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chiu-Ping</au><au>Tsai, Tsung-I.</au><au>Cheng, Ting</au><au>Shivatare, Vidya S.</au><au>Wu, Chung-Yi</au><au>Wong, Chi-Huey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-23</date><risdate>2018</risdate><volume>115</volume><issue>4</issue><spage>720</spage><epage>725</epage><pages>720-725</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29311294</pmid><doi>10.1073/pnas.1718172115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (4), p.720-725 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5789950 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Biological Sciences Cancer Carbohydrates Cells Deglycosylation Effector cells Enzymes Glycosylation Infectious diseases Medical treatment Monoclonal antibodies Polysaccharides Substrates Targeted cancer therapy Trastuzumab Yeast |
title | Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycoengineering%20of%20antibody%20(Herceptin)%20through%20yeast%20expression%20and%20in%20vitro%20enzymatic%20glycosylation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Chiu-Ping&rft.date=2018-01-23&rft.volume=115&rft.issue=4&rft.spage=720&rft.epage=725&rft.pages=720-725&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1718172115&rft_dat=%3Cjstor_pubme%3E26506460%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-9ae78b7fe5cbaa87d841ff0a06dc42343d40af0df53b21be21047ae823f048b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2007086346&rft_id=info:pmid/29311294&rft_jstor_id=26506460&rfr_iscdi=true |