Loading…

Discrete roles and bifurcation of PTEN signaling and mTORC1-mediated anabolic metabolism underlie IL-7-driven B lymphopoiesis

Interleukin-7 (IL-7) drives early B lymphopoiesis, but the underlying molecular circuits remain poorly understood, especially how Stat5 (signal transducer and activator of transcription 5)-dependent and Stat5-independent pathways contribute to this process. Combining transcriptome and proteome analy...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2018-01, Vol.4 (1), p.eaar5701-eaar5701
Main Authors: Zeng, Hu, Yu, Mei, Tan, Haiyan, Li, Yuxin, Su, Wei, Shi, Hao, Dhungana, Yogesh, Guy, Cliff, Neale, Geoffrey, Cloer, Caryn, Peng, Junmin, Wang, Demin, Chi, Hongbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interleukin-7 (IL-7) drives early B lymphopoiesis, but the underlying molecular circuits remain poorly understood, especially how Stat5 (signal transducer and activator of transcription 5)-dependent and Stat5-independent pathways contribute to this process. Combining transcriptome and proteome analyses and mouse genetic models, we show that IL-7 promotes anabolic metabolism and biosynthetic programs in pro-B cells. IL-7-mediated activation of mTORC1 (mechanistic target of rapamycin complex 1) supported cell proliferation and metabolism in a Stat5-independent, Myc-dependent manner but was largely dispensable for cell survival or and gene expression. mTORC1 was also required for Myc-driven lymphomagenesis. PI3K (phosphatidylinositol 3-kinase) and mTORC1 had discrete effects on Stat5 signaling and independently controlled B cell development. PI3K was actively suppressed by PTEN (phosphatase and tensin homolog) in pro-B cells to ensure proper IL-7R expression, Stat5 activation, heavy chain rearrangement, and cell survival, suggesting the unexpected bifurcation of the classical PI3K-mTOR signaling. Together, our integrative analyses establish IL-7R-mTORC1-Myc and PTEN-mediated PI3K suppression as discrete signaling axes driving B cell development, with differential effects on IL-7R-Stat5 signaling.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aar5701