Loading…

Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling

The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temper...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2017-12, Vol.11 (1), p.53
Main Authors: Klimova, Margarita, Stepanov, Nikita, Shaysultanov, Dmitry, Chernichenko, Ruslan, Yurchenko, Nikita, Sanin, Vladimir, Zherebtsov, Sergey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-7d116c8dbd569e8aa2f68dd1e243c496ca7be1764fc38c5a42036f2a61f7bb303
cites cdi_FETCH-LOGICAL-c406t-7d116c8dbd569e8aa2f68dd1e243c496ca7be1764fc38c5a42036f2a61f7bb303
container_end_page
container_issue 1
container_start_page 53
container_title Materials
container_volume 11
creator Klimova, Margarita
Stepanov, Nikita
Shaysultanov, Dmitry
Chernichenko, Ruslan
Yurchenko, Nikita
Sanin, Vladimir
Zherebtsov, Sergey
description The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (
doi_str_mv 10.3390/ma11010053
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982839198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7d116c8dbd569e8aa2f68dd1e243c496ca7be1764fc38c5a42036f2a61f7bb303</originalsourceid><addsrcrecordid>eNpdkV1rFDEYhYMottTe-AMk4I2Io_mYySQ3Qhm2VujWUup1yCSZ3ZRssiaZwl76z82ytdbm5uQlD4fz5gDwFqPPlAr0ZaMwRhihjr4Ax1gI1mDRti-f3I_Aac53qB5KMSfiNTgignBGCT8Gv5dOp5hLmnWZk4UqGLi0eq2C08rD6xS3NhVnM1zcRz8XFwOMEyxrC8_8Jzg0QwxFueDCCg5xSOf2yi1Dc7vbWnjhVutmEUr12FXaxx00czqQ3sCb6H0d3oBXk_LZnj7oCfh5vrgdLprLH9--D2eXjW4RK01vMGaam9F0TFiuFJkYNwZb0lLdCqZVP1rcs3bSlOtOtQRRNhHF8NSPI0X0BHw9-G7ncWONtjWY8nKb3EalnYzKyf9fglvLVbyXXS9o1-Fq8OHBIMVfs81FblzW1nsVbJyzxIITTkWVir5_ht7FOYW6niQI1b_vEd9THw_UvoGc7PQYBiO5L1f-K7fC757Gf0T_Vkn_AEhLoHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002867088</pqid></control><display><type>article</type><title>Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Klimova, Margarita ; Stepanov, Nikita ; Shaysultanov, Dmitry ; Chernichenko, Ruslan ; Yurchenko, Nikita ; Sanin, Vladimir ; Zherebtsov, Sergey</creator><creatorcontrib>Klimova, Margarita ; Stepanov, Nikita ; Shaysultanov, Dmitry ; Chernichenko, Ruslan ; Yurchenko, Nikita ; Sanin, Vladimir ; Zherebtsov, Sergey</creatorcontrib><description>The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (&lt;40%), while grain (twin) boundary strengthening prevailed at higher strains.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma11010053</identifier><identifier>PMID: 29286328</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Banding ; Chemical synthesis ; Cold rolling ; Deformation ; Dislocation density ; Edge dislocations ; Elongation ; Evolution ; High entropy alloys ; Manganese ; Mechanical properties ; Microstructure ; Nickel ; Self propagating high temperature synthesis ; Stacking fault energy ; Twinning ; Yield strength ; Yield stress</subject><ispartof>Materials, 2017-12, Vol.11 (1), p.53</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7d116c8dbd569e8aa2f68dd1e243c496ca7be1764fc38c5a42036f2a61f7bb303</citedby><cites>FETCH-LOGICAL-c406t-7d116c8dbd569e8aa2f68dd1e243c496ca7be1764fc38c5a42036f2a61f7bb303</cites><orcidid>0000-0003-2476-3953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2002867088/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2002867088?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29286328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klimova, Margarita</creatorcontrib><creatorcontrib>Stepanov, Nikita</creatorcontrib><creatorcontrib>Shaysultanov, Dmitry</creatorcontrib><creatorcontrib>Chernichenko, Ruslan</creatorcontrib><creatorcontrib>Yurchenko, Nikita</creatorcontrib><creatorcontrib>Sanin, Vladimir</creatorcontrib><creatorcontrib>Zherebtsov, Sergey</creatorcontrib><title>Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (&lt;40%), while grain (twin) boundary strengthening prevailed at higher strains.</description><subject>Banding</subject><subject>Chemical synthesis</subject><subject>Cold rolling</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Edge dislocations</subject><subject>Elongation</subject><subject>Evolution</subject><subject>High entropy alloys</subject><subject>Manganese</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Self propagating high temperature synthesis</subject><subject>Stacking fault energy</subject><subject>Twinning</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV1rFDEYhYMottTe-AMk4I2Io_mYySQ3Qhm2VujWUup1yCSZ3ZRssiaZwl76z82ytdbm5uQlD4fz5gDwFqPPlAr0ZaMwRhihjr4Ax1gI1mDRti-f3I_Aac53qB5KMSfiNTgignBGCT8Gv5dOp5hLmnWZk4UqGLi0eq2C08rD6xS3NhVnM1zcRz8XFwOMEyxrC8_8Jzg0QwxFueDCCg5xSOf2yi1Dc7vbWnjhVutmEUr12FXaxx00czqQ3sCb6H0d3oBXk_LZnj7oCfh5vrgdLprLH9--D2eXjW4RK01vMGaam9F0TFiuFJkYNwZb0lLdCqZVP1rcs3bSlOtOtQRRNhHF8NSPI0X0BHw9-G7ncWONtjWY8nKb3EalnYzKyf9fglvLVbyXXS9o1-Fq8OHBIMVfs81FblzW1nsVbJyzxIITTkWVir5_ht7FOYW6niQI1b_vEd9THw_UvoGc7PQYBiO5L1f-K7fC757Gf0T_Vkn_AEhLoHc</recordid><startdate>20171229</startdate><enddate>20171229</enddate><creator>Klimova, Margarita</creator><creator>Stepanov, Nikita</creator><creator>Shaysultanov, Dmitry</creator><creator>Chernichenko, Ruslan</creator><creator>Yurchenko, Nikita</creator><creator>Sanin, Vladimir</creator><creator>Zherebtsov, Sergey</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2476-3953</orcidid></search><sort><creationdate>20171229</creationdate><title>Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling</title><author>Klimova, Margarita ; Stepanov, Nikita ; Shaysultanov, Dmitry ; Chernichenko, Ruslan ; Yurchenko, Nikita ; Sanin, Vladimir ; Zherebtsov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7d116c8dbd569e8aa2f68dd1e243c496ca7be1764fc38c5a42036f2a61f7bb303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Banding</topic><topic>Chemical synthesis</topic><topic>Cold rolling</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Edge dislocations</topic><topic>Elongation</topic><topic>Evolution</topic><topic>High entropy alloys</topic><topic>Manganese</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Self propagating high temperature synthesis</topic><topic>Stacking fault energy</topic><topic>Twinning</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klimova, Margarita</creatorcontrib><creatorcontrib>Stepanov, Nikita</creatorcontrib><creatorcontrib>Shaysultanov, Dmitry</creatorcontrib><creatorcontrib>Chernichenko, Ruslan</creatorcontrib><creatorcontrib>Yurchenko, Nikita</creatorcontrib><creatorcontrib>Sanin, Vladimir</creatorcontrib><creatorcontrib>Zherebtsov, Sergey</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klimova, Margarita</au><au>Stepanov, Nikita</au><au>Shaysultanov, Dmitry</au><au>Chernichenko, Ruslan</au><au>Yurchenko, Nikita</au><au>Sanin, Vladimir</au><au>Zherebtsov, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2017-12-29</date><risdate>2017</risdate><volume>11</volume><issue>1</issue><spage>53</spage><pages>53-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (&lt;40%), while grain (twin) boundary strengthening prevailed at higher strains.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29286328</pmid><doi>10.3390/ma11010053</doi><orcidid>https://orcid.org/0000-0003-2476-3953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2017-12, Vol.11 (1), p.53
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793551
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Full-Text Journals in Chemistry (Open access); PubMed Central
subjects Banding
Chemical synthesis
Cold rolling
Deformation
Dislocation density
Edge dislocations
Elongation
Evolution
High entropy alloys
Manganese
Mechanical properties
Microstructure
Nickel
Self propagating high temperature synthesis
Stacking fault energy
Twinning
Yield strength
Yield stress
title Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20Mechanical%20Properties%20Evolution%20of%20the%20Al,%20C-Containing%20CoCrFeNiMn-Type%20High-Entropy%20Alloy%20during%20Cold%20Rolling&rft.jtitle=Materials&rft.au=Klimova,%20Margarita&rft.date=2017-12-29&rft.volume=11&rft.issue=1&rft.spage=53&rft.pages=53-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma11010053&rft_dat=%3Cproquest_pubme%3E1982839198%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-7d116c8dbd569e8aa2f68dd1e243c496ca7be1764fc38c5a42036f2a61f7bb303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002867088&rft_id=info:pmid/29286328&rfr_iscdi=true