Loading…

Roy's largest root test under rank-one alternatives

Roy's largest root is a common test statistic in multivariate analysis, statistical signal processing and allied fields. Despite its ubiquity, provision of accurate and tractable approximations to its distribution under the alternative has been a longstanding open problem. Assuming Gaussian obs...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2017-03, Vol.104 (1), p.181-193
Main Authors: JOHNSTONE, I. M., NADLER, B.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-75a118a774518718150aca45a9f0b951cd2d645004285704d9a78468686827d3
cites cdi_FETCH-LOGICAL-c409t-75a118a774518718150aca45a9f0b951cd2d645004285704d9a78468686827d3
container_end_page 193
container_issue 1
container_start_page 181
container_title Biometrika
container_volume 104
creator JOHNSTONE, I. M.
NADLER, B.
description Roy's largest root is a common test statistic in multivariate analysis, statistical signal processing and allied fields. Despite its ubiquity, provision of accurate and tractable approximations to its distribution under the alternative has been a longstanding open problem. Assuming Gaussian observations and a rank-one alternative, or concentrated noncentrality, we derive simple yet accurate approximations for the most common low-dimensional settings. These include signal detection in noise, multiple response regression, multivariate analysis of variance and canonical correlation analysis. A small-noise perturbation approach, perhaps underused in statistics, leads to simple combinations of standard univariate distributions, such as central and noncentral χ2 and F. Our results allow approximate power and sample size calculations for Roy's test for rank-one effects, which is precisely where it is most powerful.
doi_str_mv 10.1093/biomet/asw060
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26363651</jstor_id><sourcerecordid>26363651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-75a118a774518718150aca45a9f0b951cd2d645004285704d9a78468686827d3</originalsourceid><addsrcrecordid>eNpVkMtLw0AQxhdRbH0cPSq56SV2Nvu-CFJ8QUGQ3pdtsq2pabbubir9701IrcocZob58c3Mh9AFhlsMioxmpVvZODLhCzgcoCGmnKaEYThEQwDgKaGUDtBJCMuu5Ywfo0GmKAEgMETkzW2vQ1IZv7AhJt65mMSuaurC-sSb-iN1tU1MFa2vTSw3Npyho7mpgj3f5VM0fXyYjp_TyevTy_h-kuYUVEwFMxhLIwRlWAosMQOTG8qMmsNMMZwXWcEpA6CZZAJooYyQlMsuMlGQU3TXy66b2coWua2jN5Ve-3Jl_FY7U-r_k7p81wu30UwowqVqBW52At59Nu1TelWG3FaVqa1rgs4AMAWSSWjRtEdz70Lwdr5fg0F3PuveZ9373PJXf2_b0z_GtsBlDyxDdP53zkkbDJNvuzuDog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001403280</pqid></control><display><type>article</type><title>Roy's largest root test under rank-one alternatives</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>JOHNSTONE, I. M. ; NADLER, B.</creator><creatorcontrib>JOHNSTONE, I. M. ; NADLER, B.</creatorcontrib><description>Roy's largest root is a common test statistic in multivariate analysis, statistical signal processing and allied fields. Despite its ubiquity, provision of accurate and tractable approximations to its distribution under the alternative has been a longstanding open problem. Assuming Gaussian observations and a rank-one alternative, or concentrated noncentrality, we derive simple yet accurate approximations for the most common low-dimensional settings. These include signal detection in noise, multiple response regression, multivariate analysis of variance and canonical correlation analysis. A small-noise perturbation approach, perhaps underused in statistics, leads to simple combinations of standard univariate distributions, such as central and noncentral χ2 and F. Our results allow approximate power and sample size calculations for Roy's test for rank-one effects, which is precisely where it is most powerful.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asw060</identifier><identifier>PMID: 29430030</identifier><language>eng</language><publisher>England: Biometrika Trust</publisher><ispartof>Biometrika, 2017-03, Vol.104 (1), p.181-193</ispartof><rights>2017 Biometrika Trust</rights><rights>2017 Biometrika Trust 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-75a118a774518718150aca45a9f0b951cd2d645004285704d9a78468686827d3</citedby><cites>FETCH-LOGICAL-c409t-75a118a774518718150aca45a9f0b951cd2d645004285704d9a78468686827d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26363651$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26363651$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29430030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>JOHNSTONE, I. M.</creatorcontrib><creatorcontrib>NADLER, B.</creatorcontrib><title>Roy's largest root test under rank-one alternatives</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>Roy's largest root is a common test statistic in multivariate analysis, statistical signal processing and allied fields. Despite its ubiquity, provision of accurate and tractable approximations to its distribution under the alternative has been a longstanding open problem. Assuming Gaussian observations and a rank-one alternative, or concentrated noncentrality, we derive simple yet accurate approximations for the most common low-dimensional settings. These include signal detection in noise, multiple response regression, multivariate analysis of variance and canonical correlation analysis. A small-noise perturbation approach, perhaps underused in statistics, leads to simple combinations of standard univariate distributions, such as central and noncentral χ2 and F. Our results allow approximate power and sample size calculations for Roy's test for rank-one effects, which is precisely where it is most powerful.</description><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkMtLw0AQxhdRbH0cPSq56SV2Nvu-CFJ8QUGQ3pdtsq2pabbubir9701IrcocZob58c3Mh9AFhlsMioxmpVvZODLhCzgcoCGmnKaEYThEQwDgKaGUDtBJCMuu5Ywfo0GmKAEgMETkzW2vQ1IZv7AhJt65mMSuaurC-sSb-iN1tU1MFa2vTSw3Npyho7mpgj3f5VM0fXyYjp_TyevTy_h-kuYUVEwFMxhLIwRlWAosMQOTG8qMmsNMMZwXWcEpA6CZZAJooYyQlMsuMlGQU3TXy66b2coWua2jN5Ve-3Jl_FY7U-r_k7p81wu30UwowqVqBW52At59Nu1TelWG3FaVqa1rgs4AMAWSSWjRtEdz70Lwdr5fg0F3PuveZ9373PJXf2_b0z_GtsBlDyxDdP53zkkbDJNvuzuDog</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>JOHNSTONE, I. M.</creator><creator>NADLER, B.</creator><general>Biometrika Trust</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170301</creationdate><title>Roy's largest root test under rank-one alternatives</title><author>JOHNSTONE, I. M. ; NADLER, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-75a118a774518718150aca45a9f0b951cd2d645004285704d9a78468686827d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JOHNSTONE, I. M.</creatorcontrib><creatorcontrib>NADLER, B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JOHNSTONE, I. M.</au><au>NADLER, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roy's largest root test under rank-one alternatives</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>104</volume><issue>1</issue><spage>181</spage><epage>193</epage><pages>181-193</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Roy's largest root is a common test statistic in multivariate analysis, statistical signal processing and allied fields. Despite its ubiquity, provision of accurate and tractable approximations to its distribution under the alternative has been a longstanding open problem. Assuming Gaussian observations and a rank-one alternative, or concentrated noncentrality, we derive simple yet accurate approximations for the most common low-dimensional settings. These include signal detection in noise, multiple response regression, multivariate analysis of variance and canonical correlation analysis. A small-noise perturbation approach, perhaps underused in statistics, leads to simple combinations of standard univariate distributions, such as central and noncentral χ2 and F. Our results allow approximate power and sample size calculations for Roy's test for rank-one effects, which is precisely where it is most powerful.</abstract><cop>England</cop><pub>Biometrika Trust</pub><pmid>29430030</pmid><doi>10.1093/biomet/asw060</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2017-03, Vol.104 (1), p.181-193
issn 0006-3444
1464-3510
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793689
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
title Roy's largest root test under rank-one alternatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roy's%20largest%20root%20test%20under%20rank-one%20alternatives&rft.jtitle=Biometrika&rft.au=JOHNSTONE,%20I.%20M.&rft.date=2017-03-01&rft.volume=104&rft.issue=1&rft.spage=181&rft.epage=193&rft.pages=181-193&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asw060&rft_dat=%3Cjstor_pubme%3E26363651%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-75a118a774518718150aca45a9f0b951cd2d645004285704d9a78468686827d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001403280&rft_id=info:pmid/29430030&rft_jstor_id=26363651&rfr_iscdi=true