Loading…

Probing the Mechanism of LAL-32, a Gold Nanoparticle-Based Antibiotic Discovered through Small Molecule Variable Ligand Display

The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry 2017-07, Vol.28 (7), p.1807-1810
Main Authors: Byrne-Nash, Rose, Lucero, Danielle M, Osbaugh, Niki A, Melander, Roberta J, Melander, Christian, Feldheim, Daniel L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a489t-57b4063f3c69133f9530b165bef6122fcd9446b685e3fd805d485379dd93e60a3
cites cdi_FETCH-LOGICAL-a489t-57b4063f3c69133f9530b165bef6122fcd9446b685e3fd805d485379dd93e60a3
container_end_page 1810
container_issue 7
container_start_page 1807
container_title Bioconjugate chemistry
container_volume 28
creator Byrne-Nash, Rose
Lucero, Danielle M
Osbaugh, Niki A
Melander, Roberta J
Melander, Christian
Feldheim, Daniel L
description The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the Gram-negative bacterium Escherichia coli at 1.0 μM, a concentration significantly lower than several clinically available antibiotics (such as ampicillin and gentamicin), and acute treatment with LAL-32 does not give rise to spontaneous resistant mutants. LAL-32 treatment inhibits cellular division, daughter cell separation, and twin-arginine translocation (Tat) pathway dependent shuttling of proteins to the periplasm. Furthermore, we have found that the cedA gene imparts increased resistance to LAL-32, and shown that an E. coli cedA transposon mutant exhibits increased susceptibility to LAL-32. Taken together, these studies further implicate cell division pathways as the target for this nanoparticle-based antibiotic and demonstrate that there may be inherently higher barriers for resistance evolution against nanoscale antibiotics in comparison to their small molecule counterparts.
doi_str_mv 10.1021/acs.bioconjchem.7b00199
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927466518</sourcerecordid><originalsourceid>FETCH-LOGICAL-a489t-57b4063f3c69133f9530b165bef6122fcd9446b685e3fd805d485379dd93e60a3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS1ERR_wF8ASGxZk8CN27A1SKdBWmgISj63lOM7EI8ee2kmlrvrX8WiG0rJBXvjq-rvH5-oA8AqjBUYEv9MmL1oXTQxrM9hx0bQIYSmfgCPMCKpqgcnTUqOaVlggcgiOc14jhCQW5Bk4JILTcsQRuPuWYuvCCk6DhVfWDDq4PMLYw-XpsqLkLdTwPPoOftEhbnSanPG2-qCz7eBpmFwxUVrwo8sm3thUutOQ4rwa4PdRew-vordm9hb-0snpthRLt9Kh205svL59Dg567bN9sb9PwM_Pn36cXVTLr-eXZ8WCroWcKta0NeK0p4ZLTGkvGUUt5qy1PceE9KaTdc1bLpilfScQ62rBaCO7TlLLkaYn4P1OdzO3o-2MDVPSXm2SG3W6VVE79fgluEGt4o1ijRSE1UXgzV4gxevZ5kmNZWfrvQ42zllhiQkvjigu6Ot_0HWcUyjrFYo0NecMi0I1O8qkmHOy_b0ZjNQ2ZFVCVg9CVvuQy-TLh7vcz_1JtQB0B2wV_v79H9nff0-5fA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927466518</pqid></control><display><type>article</type><title>Probing the Mechanism of LAL-32, a Gold Nanoparticle-Based Antibiotic Discovered through Small Molecule Variable Ligand Display</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Byrne-Nash, Rose ; Lucero, Danielle M ; Osbaugh, Niki A ; Melander, Roberta J ; Melander, Christian ; Feldheim, Daniel L</creator><creatorcontrib>Byrne-Nash, Rose ; Lucero, Danielle M ; Osbaugh, Niki A ; Melander, Roberta J ; Melander, Christian ; Feldheim, Daniel L</creatorcontrib><description>The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the Gram-negative bacterium Escherichia coli at 1.0 μM, a concentration significantly lower than several clinically available antibiotics (such as ampicillin and gentamicin), and acute treatment with LAL-32 does not give rise to spontaneous resistant mutants. LAL-32 treatment inhibits cellular division, daughter cell separation, and twin-arginine translocation (Tat) pathway dependent shuttling of proteins to the periplasm. Furthermore, we have found that the cedA gene imparts increased resistance to LAL-32, and shown that an E. coli cedA transposon mutant exhibits increased susceptibility to LAL-32. Taken together, these studies further implicate cell division pathways as the target for this nanoparticle-based antibiotic and demonstrate that there may be inherently higher barriers for resistance evolution against nanoscale antibiotics in comparison to their small molecule counterparts.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00199</identifier><identifier>PMID: 28636368</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ampicillin ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Arginine ; Bacteria ; Bactericidal activity ; Cell division ; Cell Division - drug effects ; Drug Discovery - methods ; Drug Resistance, Bacterial ; E coli ; Escherichia coli - cytology ; Escherichia coli - drug effects ; Escherichia coli Proteins - antagonists &amp; inhibitors ; Gentamicin ; Gold ; Ligands ; Membrane Transport Proteins ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - therapeutic use ; Molecules ; Mutants ; Nanoparticles ; Periplasm ; Proteins ; Resistant mutant ; Small Molecule Libraries ; Translocation</subject><ispartof>Bioconjugate chemistry, 2017-07, Vol.28 (7), p.1807-1810</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a489t-57b4063f3c69133f9530b165bef6122fcd9446b685e3fd805d485379dd93e60a3</citedby><cites>FETCH-LOGICAL-a489t-57b4063f3c69133f9530b165bef6122fcd9446b685e3fd805d485379dd93e60a3</cites><orcidid>0000-0001-8271-4696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28636368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Byrne-Nash, Rose</creatorcontrib><creatorcontrib>Lucero, Danielle M</creatorcontrib><creatorcontrib>Osbaugh, Niki A</creatorcontrib><creatorcontrib>Melander, Roberta J</creatorcontrib><creatorcontrib>Melander, Christian</creatorcontrib><creatorcontrib>Feldheim, Daniel L</creatorcontrib><title>Probing the Mechanism of LAL-32, a Gold Nanoparticle-Based Antibiotic Discovered through Small Molecule Variable Ligand Display</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the Gram-negative bacterium Escherichia coli at 1.0 μM, a concentration significantly lower than several clinically available antibiotics (such as ampicillin and gentamicin), and acute treatment with LAL-32 does not give rise to spontaneous resistant mutants. LAL-32 treatment inhibits cellular division, daughter cell separation, and twin-arginine translocation (Tat) pathway dependent shuttling of proteins to the periplasm. Furthermore, we have found that the cedA gene imparts increased resistance to LAL-32, and shown that an E. coli cedA transposon mutant exhibits increased susceptibility to LAL-32. Taken together, these studies further implicate cell division pathways as the target for this nanoparticle-based antibiotic and demonstrate that there may be inherently higher barriers for resistance evolution against nanoscale antibiotics in comparison to their small molecule counterparts.</description><subject>Ampicillin</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Arginine</subject><subject>Bacteria</subject><subject>Bactericidal activity</subject><subject>Cell division</subject><subject>Cell Division - drug effects</subject><subject>Drug Discovery - methods</subject><subject>Drug Resistance, Bacterial</subject><subject>E coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli Proteins - antagonists &amp; inhibitors</subject><subject>Gentamicin</subject><subject>Gold</subject><subject>Ligands</subject><subject>Membrane Transport Proteins</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - therapeutic use</subject><subject>Molecules</subject><subject>Mutants</subject><subject>Nanoparticles</subject><subject>Periplasm</subject><subject>Proteins</subject><subject>Resistant mutant</subject><subject>Small Molecule Libraries</subject><subject>Translocation</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS1ERR_wF8ASGxZk8CN27A1SKdBWmgISj63lOM7EI8ee2kmlrvrX8WiG0rJBXvjq-rvH5-oA8AqjBUYEv9MmL1oXTQxrM9hx0bQIYSmfgCPMCKpqgcnTUqOaVlggcgiOc14jhCQW5Bk4JILTcsQRuPuWYuvCCk6DhVfWDDq4PMLYw-XpsqLkLdTwPPoOftEhbnSanPG2-qCz7eBpmFwxUVrwo8sm3thUutOQ4rwa4PdRew-vordm9hb-0snpthRLt9Kh205svL59Dg567bN9sb9PwM_Pn36cXVTLr-eXZ8WCroWcKta0NeK0p4ZLTGkvGUUt5qy1PceE9KaTdc1bLpilfScQ62rBaCO7TlLLkaYn4P1OdzO3o-2MDVPSXm2SG3W6VVE79fgluEGt4o1ijRSE1UXgzV4gxevZ5kmNZWfrvQ42zllhiQkvjigu6Ot_0HWcUyjrFYo0NecMi0I1O8qkmHOy_b0ZjNQ2ZFVCVg9CVvuQy-TLh7vcz_1JtQB0B2wV_v79H9nff0-5fA</recordid><startdate>20170719</startdate><enddate>20170719</enddate><creator>Byrne-Nash, Rose</creator><creator>Lucero, Danielle M</creator><creator>Osbaugh, Niki A</creator><creator>Melander, Roberta J</creator><creator>Melander, Christian</creator><creator>Feldheim, Daniel L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8271-4696</orcidid></search><sort><creationdate>20170719</creationdate><title>Probing the Mechanism of LAL-32, a Gold Nanoparticle-Based Antibiotic Discovered through Small Molecule Variable Ligand Display</title><author>Byrne-Nash, Rose ; Lucero, Danielle M ; Osbaugh, Niki A ; Melander, Roberta J ; Melander, Christian ; Feldheim, Daniel L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a489t-57b4063f3c69133f9530b165bef6122fcd9446b685e3fd805d485379dd93e60a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ampicillin</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Arginine</topic><topic>Bacteria</topic><topic>Bactericidal activity</topic><topic>Cell division</topic><topic>Cell Division - drug effects</topic><topic>Drug Discovery - methods</topic><topic>Drug Resistance, Bacterial</topic><topic>E coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli Proteins - antagonists &amp; inhibitors</topic><topic>Gentamicin</topic><topic>Gold</topic><topic>Ligands</topic><topic>Membrane Transport Proteins</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - therapeutic use</topic><topic>Molecules</topic><topic>Mutants</topic><topic>Nanoparticles</topic><topic>Periplasm</topic><topic>Proteins</topic><topic>Resistant mutant</topic><topic>Small Molecule Libraries</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byrne-Nash, Rose</creatorcontrib><creatorcontrib>Lucero, Danielle M</creatorcontrib><creatorcontrib>Osbaugh, Niki A</creatorcontrib><creatorcontrib>Melander, Roberta J</creatorcontrib><creatorcontrib>Melander, Christian</creatorcontrib><creatorcontrib>Feldheim, Daniel L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byrne-Nash, Rose</au><au>Lucero, Danielle M</au><au>Osbaugh, Niki A</au><au>Melander, Roberta J</au><au>Melander, Christian</au><au>Feldheim, Daniel L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Mechanism of LAL-32, a Gold Nanoparticle-Based Antibiotic Discovered through Small Molecule Variable Ligand Display</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2017-07-19</date><risdate>2017</risdate><volume>28</volume><issue>7</issue><spage>1807</spage><epage>1810</epage><pages>1807-1810</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the Gram-negative bacterium Escherichia coli at 1.0 μM, a concentration significantly lower than several clinically available antibiotics (such as ampicillin and gentamicin), and acute treatment with LAL-32 does not give rise to spontaneous resistant mutants. LAL-32 treatment inhibits cellular division, daughter cell separation, and twin-arginine translocation (Tat) pathway dependent shuttling of proteins to the periplasm. Furthermore, we have found that the cedA gene imparts increased resistance to LAL-32, and shown that an E. coli cedA transposon mutant exhibits increased susceptibility to LAL-32. Taken together, these studies further implicate cell division pathways as the target for this nanoparticle-based antibiotic and demonstrate that there may be inherently higher barriers for resistance evolution against nanoscale antibiotics in comparison to their small molecule counterparts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28636368</pmid><doi>10.1021/acs.bioconjchem.7b00199</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8271-4696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2017-07, Vol.28 (7), p.1807-1810
issn 1043-1802
1520-4812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798254
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Ampicillin
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibiotics
Arginine
Bacteria
Bactericidal activity
Cell division
Cell Division - drug effects
Drug Discovery - methods
Drug Resistance, Bacterial
E coli
Escherichia coli - cytology
Escherichia coli - drug effects
Escherichia coli Proteins - antagonists & inhibitors
Gentamicin
Gold
Ligands
Membrane Transport Proteins
Metal Nanoparticles - chemistry
Metal Nanoparticles - therapeutic use
Molecules
Mutants
Nanoparticles
Periplasm
Proteins
Resistant mutant
Small Molecule Libraries
Translocation
title Probing the Mechanism of LAL-32, a Gold Nanoparticle-Based Antibiotic Discovered through Small Molecule Variable Ligand Display
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Mechanism%20of%20LAL-32,%20a%20Gold%20Nanoparticle-Based%20Antibiotic%20Discovered%20through%20Small%20Molecule%20Variable%20Ligand%20Display&rft.jtitle=Bioconjugate%20chemistry&rft.au=Byrne-Nash,%20Rose&rft.date=2017-07-19&rft.volume=28&rft.issue=7&rft.spage=1807&rft.epage=1810&rft.pages=1807-1810&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00199&rft_dat=%3Cproquest_pubme%3E1927466518%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a489t-57b4063f3c69133f9530b165bef6122fcd9446b685e3fd805d485379dd93e60a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1927466518&rft_id=info:pmid/28636368&rfr_iscdi=true