Loading…

Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior

Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like b...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (5), p.885-890
Main Authors: Points, Laurie J., Taylor, James Ward, Grizou, Jonathan, Donkers, Kevin, Cronin, Leroy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3
cites cdi_FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3
container_end_page 890
container_issue 5
container_start_page 885
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Points, Laurie J.
Taylor, James Ward
Grizou, Jonathan
Donkers, Kevin
Cronin, Leroy
description Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.
doi_str_mv 10.1073/pnas.1711089115
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26507245</jstor_id><sourcerecordid>26507245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3</originalsourceid><addsrcrecordid>eNpdkc1vVCEUxYnR2LG6dqUhcePmtfCA92Bj0jT1I2niRteEB_e1TBh4AjNpV_7rZTJ1qq5uwvlxcs89CL2l5IySkZ0v0ZQzOlJKpKJUPEMrShTtBq7Ic7QipB87yXt-gl6VsiaEKCHJS3TSK8aUoGSFfl_k6mdvvQnYxwoh-BuIFjDcLSFlU32KOM14G0s1UwC85FSTbVzBAYwruKb2Bs7bo75A84SCTXTY-WLTDvL93sSmEMBWvwM8wa3Z-ZRfoxezCQXePM5T9PPz1Y_Lr9319y_fLi-uOyuIqt0AlPSSyYHPoxolp9wIMgknx8lxycTgjOJCDWYaDXDheE-dEWwANkvr5pmdok8H32U7bcBZiDWboJfsNybf62S8_leJ_lbfpJ0Wo5KsF83g46NBTr-2UKretGjtDiZC2hZNlVRCUcL26If_0HXa5tji6b5VQogQgjXq_EDZnErJMB-XoUTvy9X7cvVTue3H-78zHPk_bTbg3QFYl5rykz4IMvZcsAch362_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002005553</pqid></control><display><type>article</type><title>Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior</title><source>PMC (PubMed Central)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Points, Laurie J. ; Taylor, James Ward ; Grizou, Jonathan ; Donkers, Kevin ; Cronin, Leroy</creator><creatorcontrib>Points, Laurie J. ; Taylor, James Ward ; Grizou, Jonathan ; Donkers, Kevin ; Cronin, Leroy</creatorcontrib><description>Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing &gt;7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1711089115</identifier><identifier>PMID: 29339510</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Artificial intelligence ; Data acquisition ; Droplets ; Dynamic stability ; Experiments ; Image acquisition ; Object recognition ; Physical properties ; Physical Sciences ; Prediction models ; Surface tension ; Swarming ; Viscosity ; Water drops</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (5), p.885-890</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 30, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3</citedby><cites>FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3</cites><orcidid>0000-0001-8035-5757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26507245$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26507245$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29339510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Points, Laurie J.</creatorcontrib><creatorcontrib>Taylor, James Ward</creatorcontrib><creatorcontrib>Grizou, Jonathan</creatorcontrib><creatorcontrib>Donkers, Kevin</creatorcontrib><creatorcontrib>Cronin, Leroy</creatorcontrib><title>Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing &gt;7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.</description><subject>Artificial intelligence</subject><subject>Data acquisition</subject><subject>Droplets</subject><subject>Dynamic stability</subject><subject>Experiments</subject><subject>Image acquisition</subject><subject>Object recognition</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Surface tension</subject><subject>Swarming</subject><subject>Viscosity</subject><subject>Water drops</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vVCEUxYnR2LG6dqUhcePmtfCA92Bj0jT1I2niRteEB_e1TBh4AjNpV_7rZTJ1qq5uwvlxcs89CL2l5IySkZ0v0ZQzOlJKpKJUPEMrShTtBq7Ic7QipB87yXt-gl6VsiaEKCHJS3TSK8aUoGSFfl_k6mdvvQnYxwoh-BuIFjDcLSFlU32KOM14G0s1UwC85FSTbVzBAYwruKb2Bs7bo75A84SCTXTY-WLTDvL93sSmEMBWvwM8wa3Z-ZRfoxezCQXePM5T9PPz1Y_Lr9319y_fLi-uOyuIqt0AlPSSyYHPoxolp9wIMgknx8lxycTgjOJCDWYaDXDheE-dEWwANkvr5pmdok8H32U7bcBZiDWboJfsNybf62S8_leJ_lbfpJ0Wo5KsF83g46NBTr-2UKretGjtDiZC2hZNlVRCUcL26If_0HXa5tji6b5VQogQgjXq_EDZnErJMB-XoUTvy9X7cvVTue3H-78zHPk_bTbg3QFYl5rykz4IMvZcsAch362_</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Points, Laurie J.</creator><creator>Taylor, James Ward</creator><creator>Grizou, Jonathan</creator><creator>Donkers, Kevin</creator><creator>Cronin, Leroy</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8035-5757</orcidid></search><sort><creationdate>20180130</creationdate><title>Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior</title><author>Points, Laurie J. ; Taylor, James Ward ; Grizou, Jonathan ; Donkers, Kevin ; Cronin, Leroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Data acquisition</topic><topic>Droplets</topic><topic>Dynamic stability</topic><topic>Experiments</topic><topic>Image acquisition</topic><topic>Object recognition</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Surface tension</topic><topic>Swarming</topic><topic>Viscosity</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Points, Laurie J.</creatorcontrib><creatorcontrib>Taylor, James Ward</creatorcontrib><creatorcontrib>Grizou, Jonathan</creatorcontrib><creatorcontrib>Donkers, Kevin</creatorcontrib><creatorcontrib>Cronin, Leroy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Points, Laurie J.</au><au>Taylor, James Ward</au><au>Grizou, Jonathan</au><au>Donkers, Kevin</au><au>Cronin, Leroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-30</date><risdate>2018</risdate><volume>115</volume><issue>5</issue><spage>885</spage><epage>890</epage><pages>885-890</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing &gt;7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29339510</pmid><doi>10.1073/pnas.1711089115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8035-5757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (5), p.885-890
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798325
source PMC (PubMed Central); JSTOR Archival Journals and Primary Sources Collection
subjects Artificial intelligence
Data acquisition
Droplets
Dynamic stability
Experiments
Image acquisition
Object recognition
Physical properties
Physical Sciences
Prediction models
Surface tension
Swarming
Viscosity
Water drops
title Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20exploration%20of%20unstable%20protocells%20leads%20to%20predictable%20properties%20and%20discovery%20of%20collective%20behavior&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Points,%20Laurie%20J.&rft.date=2018-01-30&rft.volume=115&rft.issue=5&rft.spage=885&rft.epage=890&rft.pages=885-890&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1711089115&rft_dat=%3Cjstor_pubme%3E26507245%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002005553&rft_id=info:pmid/29339510&rft_jstor_id=26507245&rfr_iscdi=true