Loading…
Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior
Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like b...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (5), p.885-890 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3 |
container_end_page | 890 |
container_issue | 5 |
container_start_page | 885 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Points, Laurie J. Taylor, James Ward Grizou, Jonathan Donkers, Kevin Cronin, Leroy |
description | Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone. |
doi_str_mv | 10.1073/pnas.1711089115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26507245</jstor_id><sourcerecordid>26507245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3</originalsourceid><addsrcrecordid>eNpdkc1vVCEUxYnR2LG6dqUhcePmtfCA92Bj0jT1I2niRteEB_e1TBh4AjNpV_7rZTJ1qq5uwvlxcs89CL2l5IySkZ0v0ZQzOlJKpKJUPEMrShTtBq7Ic7QipB87yXt-gl6VsiaEKCHJS3TSK8aUoGSFfl_k6mdvvQnYxwoh-BuIFjDcLSFlU32KOM14G0s1UwC85FSTbVzBAYwruKb2Bs7bo75A84SCTXTY-WLTDvL93sSmEMBWvwM8wa3Z-ZRfoxezCQXePM5T9PPz1Y_Lr9319y_fLi-uOyuIqt0AlPSSyYHPoxolp9wIMgknx8lxycTgjOJCDWYaDXDheE-dEWwANkvr5pmdok8H32U7bcBZiDWboJfsNybf62S8_leJ_lbfpJ0Wo5KsF83g46NBTr-2UKretGjtDiZC2hZNlVRCUcL26If_0HXa5tji6b5VQogQgjXq_EDZnErJMB-XoUTvy9X7cvVTue3H-78zHPk_bTbg3QFYl5rykz4IMvZcsAch362_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002005553</pqid></control><display><type>article</type><title>Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior</title><source>PMC (PubMed Central)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Points, Laurie J. ; Taylor, James Ward ; Grizou, Jonathan ; Donkers, Kevin ; Cronin, Leroy</creator><creatorcontrib>Points, Laurie J. ; Taylor, James Ward ; Grizou, Jonathan ; Donkers, Kevin ; Cronin, Leroy</creatorcontrib><description>Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1711089115</identifier><identifier>PMID: 29339510</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Artificial intelligence ; Data acquisition ; Droplets ; Dynamic stability ; Experiments ; Image acquisition ; Object recognition ; Physical properties ; Physical Sciences ; Prediction models ; Surface tension ; Swarming ; Viscosity ; Water drops</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (5), p.885-890</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 30, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3</citedby><cites>FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3</cites><orcidid>0000-0001-8035-5757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26507245$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26507245$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29339510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Points, Laurie J.</creatorcontrib><creatorcontrib>Taylor, James Ward</creatorcontrib><creatorcontrib>Grizou, Jonathan</creatorcontrib><creatorcontrib>Donkers, Kevin</creatorcontrib><creatorcontrib>Cronin, Leroy</creatorcontrib><title>Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.</description><subject>Artificial intelligence</subject><subject>Data acquisition</subject><subject>Droplets</subject><subject>Dynamic stability</subject><subject>Experiments</subject><subject>Image acquisition</subject><subject>Object recognition</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Surface tension</subject><subject>Swarming</subject><subject>Viscosity</subject><subject>Water drops</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vVCEUxYnR2LG6dqUhcePmtfCA92Bj0jT1I2niRteEB_e1TBh4AjNpV_7rZTJ1qq5uwvlxcs89CL2l5IySkZ0v0ZQzOlJKpKJUPEMrShTtBq7Ic7QipB87yXt-gl6VsiaEKCHJS3TSK8aUoGSFfl_k6mdvvQnYxwoh-BuIFjDcLSFlU32KOM14G0s1UwC85FSTbVzBAYwruKb2Bs7bo75A84SCTXTY-WLTDvL93sSmEMBWvwM8wa3Z-ZRfoxezCQXePM5T9PPz1Y_Lr9319y_fLi-uOyuIqt0AlPSSyYHPoxolp9wIMgknx8lxycTgjOJCDWYaDXDheE-dEWwANkvr5pmdok8H32U7bcBZiDWboJfsNybf62S8_leJ_lbfpJ0Wo5KsF83g46NBTr-2UKretGjtDiZC2hZNlVRCUcL26If_0HXa5tji6b5VQogQgjXq_EDZnErJMB-XoUTvy9X7cvVTue3H-78zHPk_bTbg3QFYl5rykz4IMvZcsAch362_</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Points, Laurie J.</creator><creator>Taylor, James Ward</creator><creator>Grizou, Jonathan</creator><creator>Donkers, Kevin</creator><creator>Cronin, Leroy</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8035-5757</orcidid></search><sort><creationdate>20180130</creationdate><title>Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior</title><author>Points, Laurie J. ; Taylor, James Ward ; Grizou, Jonathan ; Donkers, Kevin ; Cronin, Leroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Data acquisition</topic><topic>Droplets</topic><topic>Dynamic stability</topic><topic>Experiments</topic><topic>Image acquisition</topic><topic>Object recognition</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Surface tension</topic><topic>Swarming</topic><topic>Viscosity</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Points, Laurie J.</creatorcontrib><creatorcontrib>Taylor, James Ward</creatorcontrib><creatorcontrib>Grizou, Jonathan</creatorcontrib><creatorcontrib>Donkers, Kevin</creatorcontrib><creatorcontrib>Cronin, Leroy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Points, Laurie J.</au><au>Taylor, James Ward</au><au>Grizou, Jonathan</au><au>Donkers, Kevin</au><au>Cronin, Leroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-30</date><risdate>2018</risdate><volume>115</volume><issue>5</issue><spage>885</spage><epage>890</epage><pages>885-890</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29339510</pmid><doi>10.1073/pnas.1711089115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8035-5757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (5), p.885-890 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798325 |
source | PMC (PubMed Central); JSTOR Archival Journals and Primary Sources Collection |
subjects | Artificial intelligence Data acquisition Droplets Dynamic stability Experiments Image acquisition Object recognition Physical properties Physical Sciences Prediction models Surface tension Swarming Viscosity Water drops |
title | Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20exploration%20of%20unstable%20protocells%20leads%20to%20predictable%20properties%20and%20discovery%20of%20collective%20behavior&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Points,%20Laurie%20J.&rft.date=2018-01-30&rft.volume=115&rft.issue=5&rft.spage=885&rft.epage=890&rft.pages=885-890&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1711089115&rft_dat=%3Cjstor_pubme%3E26507245%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-6e10283864f7978414a50b5d87bd48356da94596ab7ae45d421da536e3f8cdff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002005553&rft_id=info:pmid/29339510&rft_jstor_id=26507245&rfr_iscdi=true |