Loading…
miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2
Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (5), p.1069-1074 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3 |
container_end_page | 1074 |
container_issue | 5 |
container_start_page | 1069 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Møller, Rasmus Schwarz, Toni M. Noriega, Vanessa M. Panis, Maryline Sachs, David Tortorella, Domenico tenOever, Benjamin R. |
description | Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting. |
doi_str_mv | 10.1073/pnas.1719036115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26507276</jstor_id><sourcerecordid>26507276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3</originalsourceid><addsrcrecordid>eNpdkc9rFDEYhoModq2ePSmBXrxM--X35CKUUttCURA9h2wmM5tlZrImmYX-92bZ2qqnEL4nD9-bF6H3BM4JKHaxm20-J4poYJIQ8QKtCGjSSK7hJVoBUNW0nPIT9CbnLQBo0cJrdEI1Y5orukLrKXz_etlMvgu2-A4XmwZfwjzg2OPNMtkZu4cSJz_YMe5DWjJOfu_tmPE6xDEOwdkRb2Iu2M4drkS9HiX5oLi7pm_Rq77y_t3jeYp-frn-cXXb3H-7ubu6vG-cAF2aXre9JlyuO-sIk8DBCe2I4NZJ5pmXnENLe9k56ThIoqR1VgovFCjwtGOn6PPRu1vWNY_zc6nLmF0Kk00PJtpg_p3MYWOGuDdC6Za1UAWfHgUp_lp8LmYK2flxtLOPSzZEt1poAtBW9Ow_dBuXNNd4htZfB-CUyEpdHCmXYs7J90_LEDCH_syhP_PcX33x8e8MT_yfwirw4Qhsc4npeS4FKKok-w1j26EL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002004216</pqid></control><display><type>article</type><title>miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Møller, Rasmus ; Schwarz, Toni M. ; Noriega, Vanessa M. ; Panis, Maryline ; Sachs, David ; Tortorella, Domenico ; tenOever, Benjamin R.</creator><creatorcontrib>Møller, Rasmus ; Schwarz, Toni M. ; Noriega, Vanessa M. ; Panis, Maryline ; Sachs, David ; Tortorella, Domenico ; tenOever, Benjamin R.</creatorcontrib><description>Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1719036115</identifier><identifier>PMID: 29339472</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biology ; Cells ; Cytomegalovirus ; Exploitation ; Fibroblasts ; Gene silencing ; Genes ; Human populations ; IE2 protein ; Infections ; Latency ; miRNA ; Myeloid cells ; Replication ; Ribonucleic acid ; RNA ; Transcription ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (5), p.1069-1074</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 30, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3</citedby><cites>FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3</cites><orcidid>0000-0002-8452-0761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26507276$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26507276$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29339472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Møller, Rasmus</creatorcontrib><creatorcontrib>Schwarz, Toni M.</creatorcontrib><creatorcontrib>Noriega, Vanessa M.</creatorcontrib><creatorcontrib>Panis, Maryline</creatorcontrib><creatorcontrib>Sachs, David</creatorcontrib><creatorcontrib>Tortorella, Domenico</creatorcontrib><creatorcontrib>tenOever, Benjamin R.</creatorcontrib><title>miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.</description><subject>Biological Sciences</subject><subject>Biology</subject><subject>Cells</subject><subject>Cytomegalovirus</subject><subject>Exploitation</subject><subject>Fibroblasts</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Human populations</subject><subject>IE2 protein</subject><subject>Infections</subject><subject>Latency</subject><subject>miRNA</subject><subject>Myeloid cells</subject><subject>Replication</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transcription</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEYhoModq2ePSmBXrxM--X35CKUUttCURA9h2wmM5tlZrImmYX-92bZ2qqnEL4nD9-bF6H3BM4JKHaxm20-J4poYJIQ8QKtCGjSSK7hJVoBUNW0nPIT9CbnLQBo0cJrdEI1Y5orukLrKXz_etlMvgu2-A4XmwZfwjzg2OPNMtkZu4cSJz_YMe5DWjJOfu_tmPE6xDEOwdkRb2Iu2M4drkS9HiX5oLi7pm_Rq77y_t3jeYp-frn-cXXb3H-7ubu6vG-cAF2aXre9JlyuO-sIk8DBCe2I4NZJ5pmXnENLe9k56ThIoqR1VgovFCjwtGOn6PPRu1vWNY_zc6nLmF0Kk00PJtpg_p3MYWOGuDdC6Za1UAWfHgUp_lp8LmYK2flxtLOPSzZEt1poAtBW9Ow_dBuXNNd4htZfB-CUyEpdHCmXYs7J90_LEDCH_syhP_PcX33x8e8MT_yfwirw4Qhsc4npeS4FKKok-w1j26EL</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Møller, Rasmus</creator><creator>Schwarz, Toni M.</creator><creator>Noriega, Vanessa M.</creator><creator>Panis, Maryline</creator><creator>Sachs, David</creator><creator>Tortorella, Domenico</creator><creator>tenOever, Benjamin R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8452-0761</orcidid></search><sort><creationdate>20180130</creationdate><title>miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2</title><author>Møller, Rasmus ; Schwarz, Toni M. ; Noriega, Vanessa M. ; Panis, Maryline ; Sachs, David ; Tortorella, Domenico ; tenOever, Benjamin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological Sciences</topic><topic>Biology</topic><topic>Cells</topic><topic>Cytomegalovirus</topic><topic>Exploitation</topic><topic>Fibroblasts</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Human populations</topic><topic>IE2 protein</topic><topic>Infections</topic><topic>Latency</topic><topic>miRNA</topic><topic>Myeloid cells</topic><topic>Replication</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transcription</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Møller, Rasmus</creatorcontrib><creatorcontrib>Schwarz, Toni M.</creatorcontrib><creatorcontrib>Noriega, Vanessa M.</creatorcontrib><creatorcontrib>Panis, Maryline</creatorcontrib><creatorcontrib>Sachs, David</creatorcontrib><creatorcontrib>Tortorella, Domenico</creatorcontrib><creatorcontrib>tenOever, Benjamin R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Møller, Rasmus</au><au>Schwarz, Toni M.</au><au>Noriega, Vanessa M.</au><au>Panis, Maryline</au><au>Sachs, David</au><au>Tortorella, Domenico</au><au>tenOever, Benjamin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-30</date><risdate>2018</risdate><volume>115</volume><issue>5</issue><spage>1069</spage><epage>1074</epage><pages>1069-1074</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29339472</pmid><doi>10.1073/pnas.1719036115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8452-0761</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (5), p.1069-1074 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798380 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Biological Sciences Biology Cells Cytomegalovirus Exploitation Fibroblasts Gene silencing Genes Human populations IE2 protein Infections Latency miRNA Myeloid cells Replication Ribonucleic acid RNA Transcription Viruses |
title | miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miRNA-mediated%20targeting%20of%20human%20cytomegalovirus%20reveals%20biological%20host%20and%20viral%20targets%20of%20IE2&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=M%C3%B8ller,%20Rasmus&rft.date=2018-01-30&rft.volume=115&rft.issue=5&rft.spage=1069&rft.epage=1074&rft.pages=1069-1074&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1719036115&rft_dat=%3Cjstor_pubme%3E26507276%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002004216&rft_id=info:pmid/29339472&rft_jstor_id=26507276&rfr_iscdi=true |