Loading…

miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2

Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (5), p.1069-1074
Main Authors: Møller, Rasmus, Schwarz, Toni M., Noriega, Vanessa M., Panis, Maryline, Sachs, David, Tortorella, Domenico, tenOever, Benjamin R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3
cites cdi_FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3
container_end_page 1074
container_issue 5
container_start_page 1069
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Møller, Rasmus
Schwarz, Toni M.
Noriega, Vanessa M.
Panis, Maryline
Sachs, David
Tortorella, Domenico
tenOever, Benjamin R.
description Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.
doi_str_mv 10.1073/pnas.1719036115
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26507276</jstor_id><sourcerecordid>26507276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3</originalsourceid><addsrcrecordid>eNpdkc9rFDEYhoModq2ePSmBXrxM--X35CKUUttCURA9h2wmM5tlZrImmYX-92bZ2qqnEL4nD9-bF6H3BM4JKHaxm20-J4poYJIQ8QKtCGjSSK7hJVoBUNW0nPIT9CbnLQBo0cJrdEI1Y5orukLrKXz_etlMvgu2-A4XmwZfwjzg2OPNMtkZu4cSJz_YMe5DWjJOfu_tmPE6xDEOwdkRb2Iu2M4drkS9HiX5oLi7pm_Rq77y_t3jeYp-frn-cXXb3H-7ubu6vG-cAF2aXre9JlyuO-sIk8DBCe2I4NZJ5pmXnENLe9k56ThIoqR1VgovFCjwtGOn6PPRu1vWNY_zc6nLmF0Kk00PJtpg_p3MYWOGuDdC6Za1UAWfHgUp_lp8LmYK2flxtLOPSzZEt1poAtBW9Ow_dBuXNNd4htZfB-CUyEpdHCmXYs7J90_LEDCH_syhP_PcX33x8e8MT_yfwirw4Qhsc4npeS4FKKok-w1j26EL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002004216</pqid></control><display><type>article</type><title>miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Møller, Rasmus ; Schwarz, Toni M. ; Noriega, Vanessa M. ; Panis, Maryline ; Sachs, David ; Tortorella, Domenico ; tenOever, Benjamin R.</creator><creatorcontrib>Møller, Rasmus ; Schwarz, Toni M. ; Noriega, Vanessa M. ; Panis, Maryline ; Sachs, David ; Tortorella, Domenico ; tenOever, Benjamin R.</creatorcontrib><description>Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a &gt;100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1719036115</identifier><identifier>PMID: 29339472</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biology ; Cells ; Cytomegalovirus ; Exploitation ; Fibroblasts ; Gene silencing ; Genes ; Human populations ; IE2 protein ; Infections ; Latency ; miRNA ; Myeloid cells ; Replication ; Ribonucleic acid ; RNA ; Transcription ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (5), p.1069-1074</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 30, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3</citedby><cites>FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3</cites><orcidid>0000-0002-8452-0761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26507276$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26507276$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29339472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Møller, Rasmus</creatorcontrib><creatorcontrib>Schwarz, Toni M.</creatorcontrib><creatorcontrib>Noriega, Vanessa M.</creatorcontrib><creatorcontrib>Panis, Maryline</creatorcontrib><creatorcontrib>Sachs, David</creatorcontrib><creatorcontrib>Tortorella, Domenico</creatorcontrib><creatorcontrib>tenOever, Benjamin R.</creatorcontrib><title>miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a &gt;100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.</description><subject>Biological Sciences</subject><subject>Biology</subject><subject>Cells</subject><subject>Cytomegalovirus</subject><subject>Exploitation</subject><subject>Fibroblasts</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Human populations</subject><subject>IE2 protein</subject><subject>Infections</subject><subject>Latency</subject><subject>miRNA</subject><subject>Myeloid cells</subject><subject>Replication</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transcription</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEYhoModq2ePSmBXrxM--X35CKUUttCURA9h2wmM5tlZrImmYX-92bZ2qqnEL4nD9-bF6H3BM4JKHaxm20-J4poYJIQ8QKtCGjSSK7hJVoBUNW0nPIT9CbnLQBo0cJrdEI1Y5orukLrKXz_etlMvgu2-A4XmwZfwjzg2OPNMtkZu4cSJz_YMe5DWjJOfu_tmPE6xDEOwdkRb2Iu2M4drkS9HiX5oLi7pm_Rq77y_t3jeYp-frn-cXXb3H-7ubu6vG-cAF2aXre9JlyuO-sIk8DBCe2I4NZJ5pmXnENLe9k56ThIoqR1VgovFCjwtGOn6PPRu1vWNY_zc6nLmF0Kk00PJtpg_p3MYWOGuDdC6Za1UAWfHgUp_lp8LmYK2flxtLOPSzZEt1poAtBW9Ow_dBuXNNd4htZfB-CUyEpdHCmXYs7J90_LEDCH_syhP_PcX33x8e8MT_yfwirw4Qhsc4npeS4FKKok-w1j26EL</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Møller, Rasmus</creator><creator>Schwarz, Toni M.</creator><creator>Noriega, Vanessa M.</creator><creator>Panis, Maryline</creator><creator>Sachs, David</creator><creator>Tortorella, Domenico</creator><creator>tenOever, Benjamin R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8452-0761</orcidid></search><sort><creationdate>20180130</creationdate><title>miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2</title><author>Møller, Rasmus ; Schwarz, Toni M. ; Noriega, Vanessa M. ; Panis, Maryline ; Sachs, David ; Tortorella, Domenico ; tenOever, Benjamin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological Sciences</topic><topic>Biology</topic><topic>Cells</topic><topic>Cytomegalovirus</topic><topic>Exploitation</topic><topic>Fibroblasts</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Human populations</topic><topic>IE2 protein</topic><topic>Infections</topic><topic>Latency</topic><topic>miRNA</topic><topic>Myeloid cells</topic><topic>Replication</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transcription</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Møller, Rasmus</creatorcontrib><creatorcontrib>Schwarz, Toni M.</creatorcontrib><creatorcontrib>Noriega, Vanessa M.</creatorcontrib><creatorcontrib>Panis, Maryline</creatorcontrib><creatorcontrib>Sachs, David</creatorcontrib><creatorcontrib>Tortorella, Domenico</creatorcontrib><creatorcontrib>tenOever, Benjamin R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Møller, Rasmus</au><au>Schwarz, Toni M.</au><au>Noriega, Vanessa M.</au><au>Panis, Maryline</au><au>Sachs, David</au><au>Tortorella, Domenico</au><au>tenOever, Benjamin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-30</date><risdate>2018</risdate><volume>115</volume><issue>5</issue><spage>1069</spage><epage>1074</epage><pages>1069-1074</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a &gt;100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29339472</pmid><doi>10.1073/pnas.1719036115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8452-0761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (5), p.1069-1074
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798380
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Biological Sciences
Biology
Cells
Cytomegalovirus
Exploitation
Fibroblasts
Gene silencing
Genes
Human populations
IE2 protein
Infections
Latency
miRNA
Myeloid cells
Replication
Ribonucleic acid
RNA
Transcription
Viruses
title miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miRNA-mediated%20targeting%20of%20human%20cytomegalovirus%20reveals%20biological%20host%20and%20viral%20targets%20of%20IE2&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=M%C3%B8ller,%20Rasmus&rft.date=2018-01-30&rft.volume=115&rft.issue=5&rft.spage=1069&rft.epage=1074&rft.pages=1069-1074&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1719036115&rft_dat=%3Cjstor_pubme%3E26507276%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-f98f9146bdac136040c59c154ac63e3e644082f6dc6c406176aca65e57070e2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002004216&rft_id=info:pmid/29339472&rft_jstor_id=26507276&rfr_iscdi=true