Loading…
Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media
Manipulating and focusing light deep inside biological tissue and tissue-like complex media has been desired for long yet considered challenging. One feasible strategy is through optical wavefront engineering, where the optical scattering-induced phase distortions are time reversed or pre-compensate...
Saved in:
Published in: | Scientific reports 2018-02, Vol.8 (1), p.2927-8, Article 2927 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-93697f8aec3f0a98c3127d45ae9187e4d70c707def67eed1a9f94a2ce104c7543 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-93697f8aec3f0a98c3127d45ae9187e4d70c707def67eed1a9f94a2ce104c7543 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 2927 |
container_title | Scientific reports |
container_volume | 8 |
creator | Yu, Zhipeng Huangfu, Jiangtao Zhao, Fangyuan Xia, Meiyun Wu, Xi Niu, Xufeng Li, Deyu Lai, Puxiang Wang, Daifa |
description | Manipulating and focusing light deep inside biological tissue and tissue-like complex media has been desired for long yet considered challenging. One feasible strategy is through optical wavefront engineering, where the optical scattering-induced phase distortions are time reversed or pre-compensated so that photons travel along different optical paths interfere constructively at the targeted position within a scattering medium. To define the targeted position, an internal guidestar is needed to guide or provide a feedback for wavefront engineering. It could be injected or embedded probes such as fluorescence or nonlinear microspheres, ultrasonic modulation, as well as absorption perturbation. Here we propose to use a magnetically controlled optical absorbing microsphere as the internal guidestar. Using a digital optical phase conjugation system, we obtained sharp optical focusing within scattering media through time-reversing the scattered light perturbed by the magnetic microsphere. Since the object is magnetically controlled, dynamic optical focusing is allowed with a relatively large field-of-view by scanning the magnetic field externally. Moreover, the magnetic microsphere can be packaged with an organic membrane, using biological or chemical means to serve as a carrier. Therefore, the technique may find particular applications for enhanced targeted drug delivery, and imaging and photoablation of angiogenic vessels in tumours. |
doi_str_mv | 10.1038/s41598-018-21258-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5811554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001895550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-93697f8aec3f0a98c3127d45ae9187e4d70c707def67eed1a9f94a2ce104c7543</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouqh_wIMUvKyHapIm2-QiyOIXKIqs5xDT6Rppm5q0gv_edFfX1YO5TJg8885MXoQOCD4hOBOngREuRYqJSCmhXKRsA40oZjylGaWba_cdtB_CK46HU8mI3EY7MTI8EXSEzMzWkHp4Bx-gSGo9b6CzRlfVR2Jc03lXVTHfgu96_6w765pkPHu8mz4cJ65dkEnpTB9sM09sE2wBSTC668APmRoKq_fQVqmrAPtfcRc9XV7Mptfp7f3VzfT8NjWc4S6V2UTmpdBgshJrKUxGaF4wrkESkQMrcmxynBdQTnKAgmhZSqapAYKZyTnLdtHZUrftn2NjA3F8XanW21r7D-W0Vb9fGvui5u5dcUEIXwiMvwS8e-shdKq2wUBV6QZcHxTFmFLCMikievQHfXW9b-J6A0WE5JzjSNElZbwLwUO5GoZgNdioljaqWKEWNqphisP1NVYl36ZFIFsCoR0-GfxP739kPwH3Jane</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001895550</pqid></control><display><type>article</type><title>Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yu, Zhipeng ; Huangfu, Jiangtao ; Zhao, Fangyuan ; Xia, Meiyun ; Wu, Xi ; Niu, Xufeng ; Li, Deyu ; Lai, Puxiang ; Wang, Daifa</creator><creatorcontrib>Yu, Zhipeng ; Huangfu, Jiangtao ; Zhao, Fangyuan ; Xia, Meiyun ; Wu, Xi ; Niu, Xufeng ; Li, Deyu ; Lai, Puxiang ; Wang, Daifa</creatorcontrib><description>Manipulating and focusing light deep inside biological tissue and tissue-like complex media has been desired for long yet considered challenging. One feasible strategy is through optical wavefront engineering, where the optical scattering-induced phase distortions are time reversed or pre-compensated so that photons travel along different optical paths interfere constructively at the targeted position within a scattering medium. To define the targeted position, an internal guidestar is needed to guide or provide a feedback for wavefront engineering. It could be injected or embedded probes such as fluorescence or nonlinear microspheres, ultrasonic modulation, as well as absorption perturbation. Here we propose to use a magnetically controlled optical absorbing microsphere as the internal guidestar. Using a digital optical phase conjugation system, we obtained sharp optical focusing within scattering media through time-reversing the scattered light perturbed by the magnetic microsphere. Since the object is magnetically controlled, dynamic optical focusing is allowed with a relatively large field-of-view by scanning the magnetic field externally. Moreover, the magnetic microsphere can be packaged with an organic membrane, using biological or chemical means to serve as a carrier. Therefore, the technique may find particular applications for enhanced targeted drug delivery, and imaging and photoablation of angiogenic vessels in tumours.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-21258-4</identifier><identifier>PMID: 29440682</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1107 ; 639/766/400 ; Angiogenesis ; Biomedical engineering ; Digital cameras ; Drug delivery ; Engineering ; Fluorescent indicators ; Humanities and Social Sciences ; Light ; Magnetic fields ; Microspheres ; multidisciplinary ; Photons ; Science ; Science (multidisciplinary) ; Tissues ; Tumors ; Ultrasonic imaging</subject><ispartof>Scientific reports, 2018-02, Vol.8 (1), p.2927-8, Article 2927</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-93697f8aec3f0a98c3127d45ae9187e4d70c707def67eed1a9f94a2ce104c7543</citedby><cites>FETCH-LOGICAL-c540t-93697f8aec3f0a98c3127d45ae9187e4d70c707def67eed1a9f94a2ce104c7543</cites><orcidid>0000-0003-4811-2012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2001895550/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2001895550?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29440682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Zhipeng</creatorcontrib><creatorcontrib>Huangfu, Jiangtao</creatorcontrib><creatorcontrib>Zhao, Fangyuan</creatorcontrib><creatorcontrib>Xia, Meiyun</creatorcontrib><creatorcontrib>Wu, Xi</creatorcontrib><creatorcontrib>Niu, Xufeng</creatorcontrib><creatorcontrib>Li, Deyu</creatorcontrib><creatorcontrib>Lai, Puxiang</creatorcontrib><creatorcontrib>Wang, Daifa</creatorcontrib><title>Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Manipulating and focusing light deep inside biological tissue and tissue-like complex media has been desired for long yet considered challenging. One feasible strategy is through optical wavefront engineering, where the optical scattering-induced phase distortions are time reversed or pre-compensated so that photons travel along different optical paths interfere constructively at the targeted position within a scattering medium. To define the targeted position, an internal guidestar is needed to guide or provide a feedback for wavefront engineering. It could be injected or embedded probes such as fluorescence or nonlinear microspheres, ultrasonic modulation, as well as absorption perturbation. Here we propose to use a magnetically controlled optical absorbing microsphere as the internal guidestar. Using a digital optical phase conjugation system, we obtained sharp optical focusing within scattering media through time-reversing the scattered light perturbed by the magnetic microsphere. Since the object is magnetically controlled, dynamic optical focusing is allowed with a relatively large field-of-view by scanning the magnetic field externally. Moreover, the magnetic microsphere can be packaged with an organic membrane, using biological or chemical means to serve as a carrier. Therefore, the technique may find particular applications for enhanced targeted drug delivery, and imaging and photoablation of angiogenic vessels in tumours.</description><subject>639/624/1107</subject><subject>639/766/400</subject><subject>Angiogenesis</subject><subject>Biomedical engineering</subject><subject>Digital cameras</subject><subject>Drug delivery</subject><subject>Engineering</subject><subject>Fluorescent indicators</subject><subject>Humanities and Social Sciences</subject><subject>Light</subject><subject>Magnetic fields</subject><subject>Microspheres</subject><subject>multidisciplinary</subject><subject>Photons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1LxDAQhoMouqh_wIMUvKyHapIm2-QiyOIXKIqs5xDT6Rppm5q0gv_edFfX1YO5TJg8885MXoQOCD4hOBOngREuRYqJSCmhXKRsA40oZjylGaWba_cdtB_CK46HU8mI3EY7MTI8EXSEzMzWkHp4Bx-gSGo9b6CzRlfVR2Jc03lXVTHfgu96_6w765pkPHu8mz4cJ65dkEnpTB9sM09sE2wBSTC668APmRoKq_fQVqmrAPtfcRc9XV7Mptfp7f3VzfT8NjWc4S6V2UTmpdBgshJrKUxGaF4wrkESkQMrcmxynBdQTnKAgmhZSqapAYKZyTnLdtHZUrftn2NjA3F8XanW21r7D-W0Vb9fGvui5u5dcUEIXwiMvwS8e-shdKq2wUBV6QZcHxTFmFLCMikievQHfXW9b-J6A0WE5JzjSNElZbwLwUO5GoZgNdioljaqWKEWNqphisP1NVYl36ZFIFsCoR0-GfxP739kPwH3Jane</recordid><startdate>20180213</startdate><enddate>20180213</enddate><creator>Yu, Zhipeng</creator><creator>Huangfu, Jiangtao</creator><creator>Zhao, Fangyuan</creator><creator>Xia, Meiyun</creator><creator>Wu, Xi</creator><creator>Niu, Xufeng</creator><creator>Li, Deyu</creator><creator>Lai, Puxiang</creator><creator>Wang, Daifa</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4811-2012</orcidid></search><sort><creationdate>20180213</creationdate><title>Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media</title><author>Yu, Zhipeng ; Huangfu, Jiangtao ; Zhao, Fangyuan ; Xia, Meiyun ; Wu, Xi ; Niu, Xufeng ; Li, Deyu ; Lai, Puxiang ; Wang, Daifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-93697f8aec3f0a98c3127d45ae9187e4d70c707def67eed1a9f94a2ce104c7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/1107</topic><topic>639/766/400</topic><topic>Angiogenesis</topic><topic>Biomedical engineering</topic><topic>Digital cameras</topic><topic>Drug delivery</topic><topic>Engineering</topic><topic>Fluorescent indicators</topic><topic>Humanities and Social Sciences</topic><topic>Light</topic><topic>Magnetic fields</topic><topic>Microspheres</topic><topic>multidisciplinary</topic><topic>Photons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhipeng</creatorcontrib><creatorcontrib>Huangfu, Jiangtao</creatorcontrib><creatorcontrib>Zhao, Fangyuan</creatorcontrib><creatorcontrib>Xia, Meiyun</creatorcontrib><creatorcontrib>Wu, Xi</creatorcontrib><creatorcontrib>Niu, Xufeng</creatorcontrib><creatorcontrib>Li, Deyu</creatorcontrib><creatorcontrib>Lai, Puxiang</creatorcontrib><creatorcontrib>Wang, Daifa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhipeng</au><au>Huangfu, Jiangtao</au><au>Zhao, Fangyuan</au><au>Xia, Meiyun</au><au>Wu, Xi</au><au>Niu, Xufeng</au><au>Li, Deyu</au><au>Lai, Puxiang</au><au>Wang, Daifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-02-13</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>2927</spage><epage>8</epage><pages>2927-8</pages><artnum>2927</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Manipulating and focusing light deep inside biological tissue and tissue-like complex media has been desired for long yet considered challenging. One feasible strategy is through optical wavefront engineering, where the optical scattering-induced phase distortions are time reversed or pre-compensated so that photons travel along different optical paths interfere constructively at the targeted position within a scattering medium. To define the targeted position, an internal guidestar is needed to guide or provide a feedback for wavefront engineering. It could be injected or embedded probes such as fluorescence or nonlinear microspheres, ultrasonic modulation, as well as absorption perturbation. Here we propose to use a magnetically controlled optical absorbing microsphere as the internal guidestar. Using a digital optical phase conjugation system, we obtained sharp optical focusing within scattering media through time-reversing the scattered light perturbed by the magnetic microsphere. Since the object is magnetically controlled, dynamic optical focusing is allowed with a relatively large field-of-view by scanning the magnetic field externally. Moreover, the magnetic microsphere can be packaged with an organic membrane, using biological or chemical means to serve as a carrier. Therefore, the technique may find particular applications for enhanced targeted drug delivery, and imaging and photoablation of angiogenic vessels in tumours.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29440682</pmid><doi>10.1038/s41598-018-21258-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4811-2012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-02, Vol.8 (1), p.2927-8, Article 2927 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5811554 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1107 639/766/400 Angiogenesis Biomedical engineering Digital cameras Drug delivery Engineering Fluorescent indicators Humanities and Social Sciences Light Magnetic fields Microspheres multidisciplinary Photons Science Science (multidisciplinary) Tissues Tumors Ultrasonic imaging |
title | Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-reversed%20magnetically%20controlled%20perturbation%20(TRMCP)%20optical%20focusing%20inside%20scattering%20media&rft.jtitle=Scientific%20reports&rft.au=Yu,%20Zhipeng&rft.date=2018-02-13&rft.volume=8&rft.issue=1&rft.spage=2927&rft.epage=8&rft.pages=2927-8&rft.artnum=2927&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-21258-4&rft_dat=%3Cproquest_pubme%3E2001895550%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-93697f8aec3f0a98c3127d45ae9187e4d70c707def67eed1a9f94a2ce104c7543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001895550&rft_id=info:pmid/29440682&rfr_iscdi=true |