Loading…

Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase

Abstract The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal stru...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2018-02, Vol.46 (3), p.1486-1500
Main Authors: Lu, Ke-Yu, Chen, Wei-Fei, Rety, Stephane, Liu, Na-Nv, Wu, Wen-Qiang, Dai, Yang-Xue, Li, Dan, Ma, Hai-Yun, Dou, Shuo-Xing, Xi, Xu-Guang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-cfed39ca1a4198632a521ae78ef321f47b37ef2718da65b1263294a62b55e9503
cites cdi_FETCH-LOGICAL-c376t-cfed39ca1a4198632a521ae78ef321f47b37ef2718da65b1263294a62b55e9503
container_end_page 1500
container_issue 3
container_start_page 1486
container_title Nucleic acids research
container_volume 46
creator Lu, Ke-Yu
Chen, Wei-Fei
Rety, Stephane
Liu, Na-Nv
Wu, Wen-Qiang
Dai, Yang-Xue
Li, Dan
Ma, Hai-Yun
Dou, Shuo-Xing
Xi, Xu-Guang
description Abstract The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237−780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.
doi_str_mv 10.1093/nar/gkx1217
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5814829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkx1217</oup_id><sourcerecordid>1973021410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-cfed39ca1a4198632a521ae78ef321f47b37ef2718da65b1263294a62b55e9503</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rh68i45iSK9m0rSH7ksLIu6CwMK6jmkM9XT0e5kTNKD_nszzLioB0-BylNPpfIS8hzYBTAlLr2Jl9tvP4BD-4CsQDS8kqrhD8mKCVZXwGR3Rp6k9JUxkFDLx-SMK844KLki_Z1PbjvmRJ3PgeYRacpxsXmJZqLGb-iMdjTepews7U1yiYaBzsuU3bB4m13wBfx0QS1G3LvkDNKPboAdHXFy1iR8Sh4NZkr47HSeky_v3n6-ua3WH97f3VyvKyvaJld2wI1Q1oCRoLpGcFNzMNh2OAgOg2x70eLAW-g2pql74AVR0jS8r2tUNRPn5Oro3S39jBuLPpcd9C662cSfOhin_77xbtTbsNd1B7LjqgheHwXjP22312t9qLEysVES9lDYV6dhMXxfMGU9u2RxmozHsCQNqhXliyUc3vXmiNoYUoo43LuB6UOCuiSoTwkW-sWfW9yzvyMrwMsjEJbdf02_AEflpZ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973021410</pqid></control><display><type>article</type><title>Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase</title><source>Open Access: PubMed Central</source><source>Open Access: Oxford University Press Open Journals</source><creator>Lu, Ke-Yu ; Chen, Wei-Fei ; Rety, Stephane ; Liu, Na-Nv ; Wu, Wen-Qiang ; Dai, Yang-Xue ; Li, Dan ; Ma, Hai-Yun ; Dou, Shuo-Xing ; Xi, Xu-Guang</creator><creatorcontrib>Lu, Ke-Yu ; Chen, Wei-Fei ; Rety, Stephane ; Liu, Na-Nv ; Wu, Wen-Qiang ; Dai, Yang-Xue ; Li, Dan ; Ma, Hai-Yun ; Dou, Shuo-Xing ; Xi, Xu-Guang</creatorcontrib><description>Abstract The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237−780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkx1217</identifier><identifier>PMID: 29202194</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biochemistry ; Biochemistry, Molecular Biology ; Life Sciences ; Structural Biology</subject><ispartof>Nucleic acids research, 2018-02, Vol.46 (3), p.1486-1500</ispartof><rights>The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-cfed39ca1a4198632a521ae78ef321f47b37ef2718da65b1263294a62b55e9503</citedby><cites>FETCH-LOGICAL-c376t-cfed39ca1a4198632a521ae78ef321f47b37ef2718da65b1263294a62b55e9503</cites><orcidid>0000-0002-2089-6727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814829/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814829/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29202194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03296941$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Ke-Yu</creatorcontrib><creatorcontrib>Chen, Wei-Fei</creatorcontrib><creatorcontrib>Rety, Stephane</creatorcontrib><creatorcontrib>Liu, Na-Nv</creatorcontrib><creatorcontrib>Wu, Wen-Qiang</creatorcontrib><creatorcontrib>Dai, Yang-Xue</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Ma, Hai-Yun</creatorcontrib><creatorcontrib>Dou, Shuo-Xing</creatorcontrib><creatorcontrib>Xi, Xu-Guang</creatorcontrib><title>Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237−780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.</description><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Life Sciences</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kU2LFDEQhoMo7rh68i45iSK9m0rSH7ksLIu6CwMK6jmkM9XT0e5kTNKD_nszzLioB0-BylNPpfIS8hzYBTAlLr2Jl9tvP4BD-4CsQDS8kqrhD8mKCVZXwGR3Rp6k9JUxkFDLx-SMK844KLki_Z1PbjvmRJ3PgeYRacpxsXmJZqLGb-iMdjTepews7U1yiYaBzsuU3bB4m13wBfx0QS1G3LvkDNKPboAdHXFy1iR8Sh4NZkr47HSeky_v3n6-ua3WH97f3VyvKyvaJld2wI1Q1oCRoLpGcFNzMNh2OAgOg2x70eLAW-g2pql74AVR0jS8r2tUNRPn5Oro3S39jBuLPpcd9C662cSfOhin_77xbtTbsNd1B7LjqgheHwXjP22312t9qLEysVES9lDYV6dhMXxfMGU9u2RxmozHsCQNqhXliyUc3vXmiNoYUoo43LuB6UOCuiSoTwkW-sWfW9yzvyMrwMsjEJbdf02_AEflpZ8</recordid><startdate>20180216</startdate><enddate>20180216</enddate><creator>Lu, Ke-Yu</creator><creator>Chen, Wei-Fei</creator><creator>Rety, Stephane</creator><creator>Liu, Na-Nv</creator><creator>Wu, Wen-Qiang</creator><creator>Dai, Yang-Xue</creator><creator>Li, Dan</creator><creator>Ma, Hai-Yun</creator><creator>Dou, Shuo-Xing</creator><creator>Xi, Xu-Guang</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2089-6727</orcidid></search><sort><creationdate>20180216</creationdate><title>Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase</title><author>Lu, Ke-Yu ; Chen, Wei-Fei ; Rety, Stephane ; Liu, Na-Nv ; Wu, Wen-Qiang ; Dai, Yang-Xue ; Li, Dan ; Ma, Hai-Yun ; Dou, Shuo-Xing ; Xi, Xu-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-cfed39ca1a4198632a521ae78ef321f47b37ef2718da65b1263294a62b55e9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Life Sciences</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ke-Yu</creatorcontrib><creatorcontrib>Chen, Wei-Fei</creatorcontrib><creatorcontrib>Rety, Stephane</creatorcontrib><creatorcontrib>Liu, Na-Nv</creatorcontrib><creatorcontrib>Wu, Wen-Qiang</creatorcontrib><creatorcontrib>Dai, Yang-Xue</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Ma, Hai-Yun</creatorcontrib><creatorcontrib>Dou, Shuo-Xing</creatorcontrib><creatorcontrib>Xi, Xu-Guang</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ke-Yu</au><au>Chen, Wei-Fei</au><au>Rety, Stephane</au><au>Liu, Na-Nv</au><au>Wu, Wen-Qiang</au><au>Dai, Yang-Xue</au><au>Li, Dan</au><au>Ma, Hai-Yun</au><au>Dou, Shuo-Xing</au><au>Xi, Xu-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2018-02-16</date><risdate>2018</risdate><volume>46</volume><issue>3</issue><spage>1486</spage><epage>1500</epage><pages>1486-1500</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237−780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29202194</pmid><doi>10.1093/nar/gkx1217</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2089-6727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2018-02, Vol.46 (3), p.1486-1500
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5814829
source Open Access: PubMed Central; Open Access: Oxford University Press Open Journals
subjects Biochemistry
Biochemistry, Molecular Biology
Life Sciences
Structural Biology
title Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20structural%20and%20mechanistic%20basis%20of%20multifunctional%20S.%20cerevisiae%20Pif1p%20helicase&rft.jtitle=Nucleic%20acids%20research&rft.au=Lu,%20Ke-Yu&rft.date=2018-02-16&rft.volume=46&rft.issue=3&rft.spage=1486&rft.epage=1500&rft.pages=1486-1500&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkx1217&rft_dat=%3Cproquest_pubme%3E1973021410%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-cfed39ca1a4198632a521ae78ef321f47b37ef2718da65b1263294a62b55e9503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1973021410&rft_id=info:pmid/29202194&rft_oup_id=10.1093/nar/gkx1217&rfr_iscdi=true