Loading…
New insights into the cellular responses to iron nanoparticles in Capsicum annuum
In this study, the anatomical and ultrastructural responses of Capsicum annuum to iron nanoparticles (Fe NPs) were determined. The results showed that the bio-effects of Fe NPs on plants could be positive or negative, depending on the additive concentrations. Low concentrations of Fe NPs were found...
Saved in:
Published in: | Scientific reports 2018-02, Vol.8 (1), p.3228-9, Article 3228 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the anatomical and ultrastructural responses of
Capsicum annuum
to iron nanoparticles (Fe NPs) were determined. The results showed that the bio-effects of Fe NPs on plants could be positive or negative, depending on the additive concentrations. Low concentrations of Fe NPs were found to promote plant growth. Light and electron microscope analyses showed that the Fe NPs promoted plant growth by altering the leaf organization, and increasing the chloroplast number and grana stacking, as well as regulating the development of vascular bundles. Meanwhile, it was found that the Fe NPs could be absorbed in the roots, and then transported to the central cylinder in bio-available forms, where they were translocated and utilized by the leaves and stems. In contrast, high concentrations of Fe NPs appeared to be harmful to the plants, and the majority of Fe NPs were aggregated into cell walls and transported via the apoplastic pathway in the roots, which may potentially block the transfer of iron nutrients. Taken together, the aforementioned data showed that the rational use of Fe NPs could alleviate iron deficiency, and Fe NPs could be an ideal supply for Fe
2+
ions fertilizers in agriculture. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-18055-w |