Loading…

Carboxyl of Poly(D,L-lactide-co-glycolide) Nanoparticles of Perfluorooctyl Bromide for Ultrasonic Imaging of Tumor

Perfluorooctyl bromide (PFOB) enclosed nanoparticles (NPs) as ultrasonic contrasts have shown promising results in the recent years. However, NPs display poor contrast enhancement in vivo. In this work, we used the copolymers poly(lactide-co-glycolide) carboxylic acid (PLGA-COOH) and poly(lactide-co...

Full description

Saved in:
Bibliographic Details
Published in:Contrast media and molecular imaging 2018-01, Vol.2018 (2018), p.1-10
Main Authors: Wang, Wei, Rong, Pengfei, Yang, Cejun, Ma, Xiaoqian, Wang, Zheng, Wang, Peiqi, Ding, Jinsong, Luo, Shengjuan, Liang, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perfluorooctyl bromide (PFOB) enclosed nanoparticles (NPs) as ultrasonic contrasts have shown promising results in the recent years. However, NPs display poor contrast enhancement in vivo. In this work, we used the copolymers poly(lactide-co-glycolide) carboxylic acid (PLGA-COOH) and poly(lactide-co- glycolide) poly(ethylene glycol) carboxylic acid (PLGA-PEG-COOH) as a shell to encapsulate PFOB to prepare a nanoultrasonic contrast agent. The NPs were small and uniform (210.6±2.9 nm with a polydispersity index of 0.129±0.016) with a complete shell nuclear structure under the transmission electron microscopy (TEM). In vitro, when concentration of NPs was ≥10 mg/ml and clinical diagnostic frequency was ≥9 MHz, NPs produced intensive enhancement of ultrasonic gray-scale signals. NPs could produce stable and obvious gray enhancement with high mechanical index (MI) (MI > 0.6). In vivo, the NPs offered good ultrasound enhancement in tumor after more than 24 h and optical imaging also indicated that NPs were mainly located at tumor site. Subsequent analysis confirmed that large accumulation of fluorescence was observed in the frozen section of the tumor tissue. All these results caused the conclusion that NPs encapsulated PFOB has achieved tumor-selective imaging in vivo.
ISSN:1555-4309
1555-4317
DOI:10.1155/2018/2957459