Loading…

Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation

Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to hete...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Society interface 2018-02, Vol.15 (139), p.20170713-20170713
Main Authors: Hornung, Raphael, Grünberger, Alexander, Westerwalbesloh, Christoph, Kohlheyer, Dietrich, Gompper, Gerhard, Elgeti, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to heterogeneous micropopulations. A detailed understanding and quantitative modelling of cellular behaviour under nutrient limitations is thus highly desirable. We use microfluidic cultivations to investigate growth and microbial behaviour of the model organism Corynebacterium glutamicum under well-controlled conditions. With a reaction–diffusion-type model, parameters are extracted from steady-state experiments with a one-dimensional nutrient gradient. Subsequently, we employ particle-based simulations with these parameters to predict the dynamical growth of a colony in two dimensions. Comparing the results of those simulations with microfluidic experiments yields excellent agreement. Our modelling approach lays the foundation for a better understanding of dynamic microbial growth processes, both in nature and in applied biotechnology.
ISSN:1742-5689
1742-5662
DOI:10.1098/rsif.2017.0713