Loading…

Glycolysis promotes caspase-3 activation in lipid rafts in T cells

Resting T cells undergo a rapid metabolic shift to glycolysis upon activation in the presence of interleukin (IL)-2, in contrast to oxidative mitochondrial respiration with IL-15. Paralleling these different metabolic states are striking differences in susceptibility to restimulation-induced cell de...

Full description

Saved in:
Bibliographic Details
Published in:Cell death & disease 2018-01, Vol.9 (2), p.62-13, Article 62
Main Authors: Secinaro, Michael A., Fortner, Karen A., Dienz, Oliver, Logan, Angela, Murphy, Michael P., Anathy, Vikas, Boyson, Jonathan E., Budd, Ralph C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resting T cells undergo a rapid metabolic shift to glycolysis upon activation in the presence of interleukin (IL)-2, in contrast to oxidative mitochondrial respiration with IL-15. Paralleling these different metabolic states are striking differences in susceptibility to restimulation-induced cell death (RICD); glycolytic effector T cells are highly sensitive to RICD, whereas non-glycolytic T cells are resistant. It is unclear whether the metabolic state of a T cell is linked to its susceptibility to RICD. Our findings reveal that IL-2-driven glycolysis promotes caspase-3 activity and increases sensitivity to RICD. Neither caspase-7, caspase-8, nor caspase-9 activity is affected by these metabolic differences. Inhibition of glycolysis with 2-deoxyglucose reduces caspase-3 activity as well as sensitivity to RICD. By contrast, IL-15-driven oxidative phosphorylation actively inhibits caspase-3 activity through its glutathionylation. We further observe active caspase-3 in the lipid rafts of glycolytic but not non-glycolytic T cells, suggesting a proximity-induced model of self-activation. Finally, we observe that effector T cells during influenza infection manifest higher levels of active caspase-3 than naive T cells. Collectively, our findings demonstrate that glycolysis drives caspase-3 activity and susceptibility to cell death in effector T cells independently of upstream caspases. Linking metabolism, caspase-3 activity, and cell death provides an intrinsic mechanism for T cells to limit the duration of effector function.
ISSN:2041-4889
2041-4889
DOI:10.1038/s41419-017-0099-z