Loading…

Dynamic quantitative detection of ABC transporter family promoter methylation by MS-HRM for predicting MDR in pancreatic cancer

The main focus of the present study was to evaluate whether ABC transporter family promoter methylation predicted multidrug resistance in gemcitabine-resistant cancer cell lines (BxPC-3/Gem and PANC-1/Gem). Using low concentrations of gemcitabine, the cell lines acquired drug resistance with differe...

Full description

Saved in:
Bibliographic Details
Published in:Oncology letters 2018-04, Vol.15 (4), p.5602-5610
Main Authors: Yao, Lie, Gu, Jichun, Mao, Yishen, Zhang, Xinju, Wang, Xiaoyi, Jin, Chen, Fu, Deliang, Li, Ji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main focus of the present study was to evaluate whether ABC transporter family promoter methylation predicted multidrug resistance in gemcitabine-resistant cancer cell lines (BxPC-3/Gem and PANC-1/Gem). Using low concentrations of gemcitabine, the cell lines acquired drug resistance with different initial gemcitabine concentrations. A novel technology, methylation-sensitive high-resolution melting, was used to monitor the dynamic changes of ABC transporter family promoter methylation, including ATP binding cassette subfamily B member 1 (ABCB1), ATP binding cassette subfamily C (ABCC) and ATP binding cassette subfamily G member 2 (ABCG2) mRNA expression. It was revealed that, with elevation of initial gemcitabine concentration, expression of ABCB1, ABCC and ABCG2 mRNA and corresponding downstream proteins was increased while promoter methylation was decreased. These discoveries indicate that promoter methylation of ABCB1, ABCC and ABCG2 may be a valuable indicator of drug-resistance characteristics in BxPC-3/Gem and PANC-1/Gem cells via quantitative and simultaneous detection. These results also implied that MDR in pancreatic cancer not only arises from gene mutation, but also originates from promoter methylation.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2018.8041