Loading…

Effect of antibiotics and NSAIDs on cyclooxygenase-2 in the enamel mineralization

The objective of this study was to determine whether the use of the most commonly prescribed antibiotics and non-steroidal anti-inflammatory drugs in childhood could disturb enamel mineralization. Forty-two Swiss mice were divided into seven groups: controls; amoxicillin; amoxicillin/clavulanate; er...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-03, Vol.8 (1), p.4132-7, Article 4132
Main Authors: Serna Muñoz, Clara, Pérez Silva, Amparo, Solano, Francisco, Castells, María Teresa, Vicente, Ascensión, Ortiz Ruiz, Antonio José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to determine whether the use of the most commonly prescribed antibiotics and non-steroidal anti-inflammatory drugs in childhood could disturb enamel mineralization. Forty-two Swiss mice were divided into seven groups: controls; amoxicillin; amoxicillin/clavulanate; erythromycin; acetaminophen; ibuprofen and celecoxib, to inhibit cyclooxygenase 2 (COX2). SEM-EDX analysis was conducted on all cusps of the third molars. Calcium (Ca), phosphorus (P), aluminum, potassium, sodium, magnesium and chlorine were quantified. The stoichiometric Ca/P molar ratios were calculated. Immunohistochemical quantification of COX2 in incisors was carried out by image analysis using COX2-specific immunostaining. Groups treated with antibiotics showed no significant differences in the content of the chemical elements. Only acetaminophen and celecoxib showed a significant decrease in Ca and P compared with the control samples. Ca/P ratios showed no difference. Groups treated with amoxicillin, amoxicillin/clavulanate, erythromycin and acetaminophen showed significantly lower amounts of immunoreactive COX2 at the enamel organ maturation stage of the mouse incisors. Our results suggest that COX2 is involved in the maturation stage of the enamel organ and that its inhibition would appear to alter amelogenesis, producing hypomineralization.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-22607-z