Loading…
Inverse Probability Weighted Cox Regression for Doubly Truncated Data
Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models h...
Saved in:
Published in: | Biometrics 2018-06, Vol.74 (2), p.481-487 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3 |
container_end_page | 487 |
container_issue | 2 |
container_start_page | 481 |
container_title | Biometrics |
container_volume | 74 |
creator | Mandel, Micha de Uña-Álvarez, Jacobo Simon, David K. Betensky, Rebecca A. |
description | Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease. |
doi_str_mv | 10.1111/biom.12771 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45092889</jstor_id><sourcerecordid>45092889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modq1evCsDXkSY-vJzkktBt61dqFRkQW8hM_tmm2V2UpOZ6v73ZrvtUj1oLiG8z_vwXr6EvKRwRPN5X_uwPqKsqugjMqFS0BIEg8dkAgCq5IJ-PyDPUlrlp5HAnpIDprVWDNSEnM76G4wJiy8x1K72nR82xTf0y6sBF8U0_Cq-4jJiSj70RRticRLGutsU8zj2jdsyJ25wz8mT1nUJX9zdh2R-djqfnpcXl59m0w8XZSOB01JqxxwHJkAoJZzgTiiHRui2YShabiqtmRbIHNbOVGoBNQitK8VbdIuaH5LjnfZ6rNe4aLAfouvsdfRrFzc2OG__rPT-yi7DjZVa8Lx5Fry9E8TwY8Q02LVPDXad6zGMyTIKlCsqVPVflBpeSQ5Gb61v_kJXYYx9_gjLQBquhQSZqXc7qokhpYjtfm4Kdpuj3eZob3PM8OuHm-7R--AyQHfAT9_h5h8q-3F2-fle-mrXs0pDiPuePJ3JXsN_A7d8sM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059384505</pqid></control><display><type>article</type><title>Inverse Probability Weighted Cox Regression for Doubly Truncated Data</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Mandel, Micha ; de Uña-Álvarez, Jacobo ; Simon, David K. ; Betensky, Rebecca A.</creator><creatorcontrib>Mandel, Micha ; de Uña-Álvarez, Jacobo ; Simon, David K. ; Betensky, Rebecca A.</creatorcontrib><description>Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12771</identifier><identifier>PMID: 28886206</identifier><language>eng</language><publisher>United States: Wiley-Blackwell</publisher><subject>Age of Onset ; Biased data ; BIOMETRIC METHODOLOGY: DISCUSSION PAPER ; biometry ; Biometry - methods ; computer software ; Humans ; Inverse weighting ; Movement disorders ; Neurodegenerative diseases ; Parkinson disease ; Parkinson Disease - genetics ; Parkinson's disease ; Polymorphism, Single Nucleotide ; Probability ; Proportional Hazards Models ; Regression Analysis ; Regression models ; Right truncation ; Single-nucleotide polymorphism ; Software ; Statistical analysis ; U statistic</subject><ispartof>Biometrics, 2018-06, Vol.74 (2), p.481-487</ispartof><rights>Copyright © 2018 International Biometric Society</rights><rights>2017, The International Biometric Society</rights><rights>2017, The International Biometric Society.</rights><rights>2018, The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3</citedby><cites>FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3</cites><orcidid>0000-0002-4270-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45092889$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45092889$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,58229,58462</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28886206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandel, Micha</creatorcontrib><creatorcontrib>de Uña-Álvarez, Jacobo</creatorcontrib><creatorcontrib>Simon, David K.</creatorcontrib><creatorcontrib>Betensky, Rebecca A.</creatorcontrib><title>Inverse Probability Weighted Cox Regression for Doubly Truncated Data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.</description><subject>Age of Onset</subject><subject>Biased data</subject><subject>BIOMETRIC METHODOLOGY: DISCUSSION PAPER</subject><subject>biometry</subject><subject>Biometry - methods</subject><subject>computer software</subject><subject>Humans</subject><subject>Inverse weighting</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Parkinson disease</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson's disease</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Probability</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Regression models</subject><subject>Right truncation</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>U statistic</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUx4Modq1evCsDXkSY-vJzkktBt61dqFRkQW8hM_tmm2V2UpOZ6v73ZrvtUj1oLiG8z_vwXr6EvKRwRPN5X_uwPqKsqugjMqFS0BIEg8dkAgCq5IJ-PyDPUlrlp5HAnpIDprVWDNSEnM76G4wJiy8x1K72nR82xTf0y6sBF8U0_Cq-4jJiSj70RRticRLGutsU8zj2jdsyJ25wz8mT1nUJX9zdh2R-djqfnpcXl59m0w8XZSOB01JqxxwHJkAoJZzgTiiHRui2YShabiqtmRbIHNbOVGoBNQitK8VbdIuaH5LjnfZ6rNe4aLAfouvsdfRrFzc2OG__rPT-yi7DjZVa8Lx5Fry9E8TwY8Q02LVPDXad6zGMyTIKlCsqVPVflBpeSQ5Gb61v_kJXYYx9_gjLQBquhQSZqXc7qokhpYjtfm4Kdpuj3eZob3PM8OuHm-7R--AyQHfAT9_h5h8q-3F2-fle-mrXs0pDiPuePJ3JXsN_A7d8sM4</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Mandel, Micha</creator><creator>de Uña-Álvarez, Jacobo</creator><creator>Simon, David K.</creator><creator>Betensky, Rebecca A.</creator><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4270-9777</orcidid></search><sort><creationdate>201806</creationdate><title>Inverse Probability Weighted Cox Regression for Doubly Truncated Data</title><author>Mandel, Micha ; de Uña-Álvarez, Jacobo ; Simon, David K. ; Betensky, Rebecca A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age of Onset</topic><topic>Biased data</topic><topic>BIOMETRIC METHODOLOGY: DISCUSSION PAPER</topic><topic>biometry</topic><topic>Biometry - methods</topic><topic>computer software</topic><topic>Humans</topic><topic>Inverse weighting</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Parkinson disease</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson's disease</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Probability</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Regression models</topic><topic>Right truncation</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>U statistic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandel, Micha</creatorcontrib><creatorcontrib>de Uña-Álvarez, Jacobo</creatorcontrib><creatorcontrib>Simon, David K.</creatorcontrib><creatorcontrib>Betensky, Rebecca A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandel, Micha</au><au>de Uña-Álvarez, Jacobo</au><au>Simon, David K.</au><au>Betensky, Rebecca A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Probability Weighted Cox Regression for Doubly Truncated Data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2018-06</date><risdate>2018</risdate><volume>74</volume><issue>2</issue><spage>481</spage><epage>487</epage><pages>481-487</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.</abstract><cop>United States</cop><pub>Wiley-Blackwell</pub><pmid>28886206</pmid><doi>10.1111/biom.12771</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4270-9777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2018-06, Vol.74 (2), p.481-487 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843502 |
source | EBSCOhost SPORTDiscus with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Age of Onset Biased data BIOMETRIC METHODOLOGY: DISCUSSION PAPER biometry Biometry - methods computer software Humans Inverse weighting Movement disorders Neurodegenerative diseases Parkinson disease Parkinson Disease - genetics Parkinson's disease Polymorphism, Single Nucleotide Probability Proportional Hazards Models Regression Analysis Regression models Right truncation Single-nucleotide polymorphism Software Statistical analysis U statistic |
title | Inverse Probability Weighted Cox Regression for Doubly Truncated Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Probability%20Weighted%20Cox%20Regression%20for%20Doubly%20Truncated%20Data&rft.jtitle=Biometrics&rft.au=Mandel,%20Micha&rft.date=2018-06&rft.volume=74&rft.issue=2&rft.spage=481&rft.epage=487&rft.pages=481-487&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12771&rft_dat=%3Cjstor_pubme%3E45092889%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2059384505&rft_id=info:pmid/28886206&rft_jstor_id=45092889&rfr_iscdi=true |