Loading…

Inverse Probability Weighted Cox Regression for Doubly Truncated Data

Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models h...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2018-06, Vol.74 (2), p.481-487
Main Authors: Mandel, Micha, de Uña-Álvarez, Jacobo, Simon, David K., Betensky, Rebecca A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3
cites cdi_FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3
container_end_page 487
container_issue 2
container_start_page 481
container_title Biometrics
container_volume 74
creator Mandel, Micha
de Uña-Álvarez, Jacobo
Simon, David K.
Betensky, Rebecca A.
description Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.
doi_str_mv 10.1111/biom.12771
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45092889</jstor_id><sourcerecordid>45092889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modq1evCsDXkSY-vJzkktBt61dqFRkQW8hM_tmm2V2UpOZ6v73ZrvtUj1oLiG8z_vwXr6EvKRwRPN5X_uwPqKsqugjMqFS0BIEg8dkAgCq5IJ-PyDPUlrlp5HAnpIDprVWDNSEnM76G4wJiy8x1K72nR82xTf0y6sBF8U0_Cq-4jJiSj70RRticRLGutsU8zj2jdsyJ25wz8mT1nUJX9zdh2R-djqfnpcXl59m0w8XZSOB01JqxxwHJkAoJZzgTiiHRui2YShabiqtmRbIHNbOVGoBNQitK8VbdIuaH5LjnfZ6rNe4aLAfouvsdfRrFzc2OG__rPT-yi7DjZVa8Lx5Fry9E8TwY8Q02LVPDXad6zGMyTIKlCsqVPVflBpeSQ5Gb61v_kJXYYx9_gjLQBquhQSZqXc7qokhpYjtfm4Kdpuj3eZob3PM8OuHm-7R--AyQHfAT9_h5h8q-3F2-fle-mrXs0pDiPuePJ3JXsN_A7d8sM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059384505</pqid></control><display><type>article</type><title>Inverse Probability Weighted Cox Regression for Doubly Truncated Data</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Mandel, Micha ; de Uña-Álvarez, Jacobo ; Simon, David K. ; Betensky, Rebecca A.</creator><creatorcontrib>Mandel, Micha ; de Uña-Álvarez, Jacobo ; Simon, David K. ; Betensky, Rebecca A.</creatorcontrib><description>Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12771</identifier><identifier>PMID: 28886206</identifier><language>eng</language><publisher>United States: Wiley-Blackwell</publisher><subject>Age of Onset ; Biased data ; BIOMETRIC METHODOLOGY: DISCUSSION PAPER ; biometry ; Biometry - methods ; computer software ; Humans ; Inverse weighting ; Movement disorders ; Neurodegenerative diseases ; Parkinson disease ; Parkinson Disease - genetics ; Parkinson's disease ; Polymorphism, Single Nucleotide ; Probability ; Proportional Hazards Models ; Regression Analysis ; Regression models ; Right truncation ; Single-nucleotide polymorphism ; Software ; Statistical analysis ; U statistic</subject><ispartof>Biometrics, 2018-06, Vol.74 (2), p.481-487</ispartof><rights>Copyright © 2018 International Biometric Society</rights><rights>2017, The International Biometric Society</rights><rights>2017, The International Biometric Society.</rights><rights>2018, The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3</citedby><cites>FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3</cites><orcidid>0000-0002-4270-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45092889$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45092889$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,58229,58462</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28886206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandel, Micha</creatorcontrib><creatorcontrib>de Uña-Álvarez, Jacobo</creatorcontrib><creatorcontrib>Simon, David K.</creatorcontrib><creatorcontrib>Betensky, Rebecca A.</creatorcontrib><title>Inverse Probability Weighted Cox Regression for Doubly Truncated Data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.</description><subject>Age of Onset</subject><subject>Biased data</subject><subject>BIOMETRIC METHODOLOGY: DISCUSSION PAPER</subject><subject>biometry</subject><subject>Biometry - methods</subject><subject>computer software</subject><subject>Humans</subject><subject>Inverse weighting</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Parkinson disease</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson's disease</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Probability</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Regression models</subject><subject>Right truncation</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>U statistic</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUx4Modq1evCsDXkSY-vJzkktBt61dqFRkQW8hM_tmm2V2UpOZ6v73ZrvtUj1oLiG8z_vwXr6EvKRwRPN5X_uwPqKsqugjMqFS0BIEg8dkAgCq5IJ-PyDPUlrlp5HAnpIDprVWDNSEnM76G4wJiy8x1K72nR82xTf0y6sBF8U0_Cq-4jJiSj70RRticRLGutsU8zj2jdsyJ25wz8mT1nUJX9zdh2R-djqfnpcXl59m0w8XZSOB01JqxxwHJkAoJZzgTiiHRui2YShabiqtmRbIHNbOVGoBNQitK8VbdIuaH5LjnfZ6rNe4aLAfouvsdfRrFzc2OG__rPT-yi7DjZVa8Lx5Fry9E8TwY8Q02LVPDXad6zGMyTIKlCsqVPVflBpeSQ5Gb61v_kJXYYx9_gjLQBquhQSZqXc7qokhpYjtfm4Kdpuj3eZob3PM8OuHm-7R--AyQHfAT9_h5h8q-3F2-fle-mrXs0pDiPuePJ3JXsN_A7d8sM4</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Mandel, Micha</creator><creator>de Uña-Álvarez, Jacobo</creator><creator>Simon, David K.</creator><creator>Betensky, Rebecca A.</creator><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4270-9777</orcidid></search><sort><creationdate>201806</creationdate><title>Inverse Probability Weighted Cox Regression for Doubly Truncated Data</title><author>Mandel, Micha ; de Uña-Álvarez, Jacobo ; Simon, David K. ; Betensky, Rebecca A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age of Onset</topic><topic>Biased data</topic><topic>BIOMETRIC METHODOLOGY: DISCUSSION PAPER</topic><topic>biometry</topic><topic>Biometry - methods</topic><topic>computer software</topic><topic>Humans</topic><topic>Inverse weighting</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Parkinson disease</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson's disease</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Probability</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Regression models</topic><topic>Right truncation</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>U statistic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandel, Micha</creatorcontrib><creatorcontrib>de Uña-Álvarez, Jacobo</creatorcontrib><creatorcontrib>Simon, David K.</creatorcontrib><creatorcontrib>Betensky, Rebecca A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandel, Micha</au><au>de Uña-Álvarez, Jacobo</au><au>Simon, David K.</au><au>Betensky, Rebecca A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Probability Weighted Cox Regression for Doubly Truncated Data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2018-06</date><risdate>2018</risdate><volume>74</volume><issue>2</issue><spage>481</spage><epage>487</epage><pages>481-487</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.</abstract><cop>United States</cop><pub>Wiley-Blackwell</pub><pmid>28886206</pmid><doi>10.1111/biom.12771</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4270-9777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2018-06, Vol.74 (2), p.481-487
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843502
source EBSCOhost SPORTDiscus with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Age of Onset
Biased data
BIOMETRIC METHODOLOGY: DISCUSSION PAPER
biometry
Biometry - methods
computer software
Humans
Inverse weighting
Movement disorders
Neurodegenerative diseases
Parkinson disease
Parkinson Disease - genetics
Parkinson's disease
Polymorphism, Single Nucleotide
Probability
Proportional Hazards Models
Regression Analysis
Regression models
Right truncation
Single-nucleotide polymorphism
Software
Statistical analysis
U statistic
title Inverse Probability Weighted Cox Regression for Doubly Truncated Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Probability%20Weighted%20Cox%20Regression%20for%20Doubly%20Truncated%20Data&rft.jtitle=Biometrics&rft.au=Mandel,%20Micha&rft.date=2018-06&rft.volume=74&rft.issue=2&rft.spage=481&rft.epage=487&rft.pages=481-487&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12771&rft_dat=%3Cjstor_pubme%3E45092889%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5031-58a2a302404664a43a46ae948fc2e4f39788284e2aeba976d0b0488763feadb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2059384505&rft_id=info:pmid/28886206&rft_jstor_id=45092889&rfr_iscdi=true