Loading…

Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous

On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO 2 through volcanic and metamorphic degassing. High atmospheric CO 2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO 2 through...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-03, Vol.8 (1), p.4197-9, Article 4197
Main Authors: Lee, Cin-Ty A., Jiang, Hehe, Ronay, Elli, Minisini, Daniel, Stiles, Jackson, Neal, Matthew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a602t-d835ca349ebbaaea319dc6822a22c63c92208797080cd9f9c5e1c0b8fc5f8e513
cites cdi_FETCH-LOGICAL-a602t-d835ca349ebbaaea319dc6822a22c63c92208797080cd9f9c5e1c0b8fc5f8e513
container_end_page 9
container_issue 1
container_start_page 4197
container_title Scientific reports
container_volume 8
creator Lee, Cin-Ty A.
Jiang, Hehe
Ronay, Elli
Minisini, Daniel
Stiles, Jackson
Neal, Matthew
description On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO 2 through volcanic and metamorphic degassing. High atmospheric CO 2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO 2 through more rapid spreading at mid-ocean ridges and, in particular, to a global flare-up in continental arc volcanism. Here, we show that global flare-ups in continental arc magmatism also enhance the global flux of nutrients into the ocean through production of windblown ash. We show that up to 75% of Si, Fe and P is leached from windblown ash during and shortly after deposition, with soluble Si, Fe and P inputs from ash alone in the Cretaceous being higher than the combined input of dust and rivers today. Ash-derived nutrient inputs may have increased the efficiency of biological productivity and organic carbon preservation in the Cretaceous, possibly explaining why the carbon isotopic signature of Cretaceous seawater was high. Variations in volcanic activity, particularly continental arcs, have the potential of profoundly altering carbon cycling at the Earth’s surface by increasing inputs of CO 2 and ash-borne nutrients, which together enhance biological productivity and burial of organic carbon, generating an abundance of hydrocarbon source rocks.
doi_str_mv 10.1038/s41598-018-22576-3
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012917642</sourcerecordid><originalsourceid>FETCH-LOGICAL-a602t-d835ca349ebbaaea319dc6822a22c63c92208797080cd9f9c5e1c0b8fc5f8e513</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaUKSP5BDEfTSi1NpZNnSpVCWtiks9JLmKsbyeNfBK6WSHei_r3Y3TdMeKhgkmG-e5vEYu5TiSgpl3udaamsqIU0FoNumUi_YKYhaV6AAXj57n7CLnO9EORpsLe1rdgJWgxCgTtn6Nk4ew-g55m0pjrxP4wMlHgdOYYvBU89j2hwYj6mLgXdLGnHiY-Dzlvgq0Yye4pLP2asBp0wXj_cZ-_75083qulp_-_J19XFdYSNgrnqjtEdVW-o6REIlbe8bA4AAvlHeAgjT2lYY4Xs7WK9JetGZwevBkJbqjH046t4v3Y56T2FOOLn7NO4w_XQRR_d3J4xbt4kPTptaNcoWgXePAin-WCjPbjdmT9OEYe_DgZBgZdvUUNC3_6B3cUmh2DtQUrWi2VNwpHyKOScanpaRwu3zcse8XMnLHfJyqgy9eW7jaeR3OgVQRyCXVthQ-vP3f2R_AaDjoCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012137062</pqid></control><display><type>article</type><title>Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lee, Cin-Ty A. ; Jiang, Hehe ; Ronay, Elli ; Minisini, Daniel ; Stiles, Jackson ; Neal, Matthew</creator><creatorcontrib>Lee, Cin-Ty A. ; Jiang, Hehe ; Ronay, Elli ; Minisini, Daniel ; Stiles, Jackson ; Neal, Matthew</creatorcontrib><description>On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO 2 through volcanic and metamorphic degassing. High atmospheric CO 2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO 2 through more rapid spreading at mid-ocean ridges and, in particular, to a global flare-up in continental arc volcanism. Here, we show that global flare-ups in continental arc magmatism also enhance the global flux of nutrients into the ocean through production of windblown ash. We show that up to 75% of Si, Fe and P is leached from windblown ash during and shortly after deposition, with soluble Si, Fe and P inputs from ash alone in the Cretaceous being higher than the combined input of dust and rivers today. Ash-derived nutrient inputs may have increased the efficiency of biological productivity and organic carbon preservation in the Cretaceous, possibly explaining why the carbon isotopic signature of Cretaceous seawater was high. Variations in volcanic activity, particularly continental arcs, have the potential of profoundly altering carbon cycling at the Earth’s surface by increasing inputs of CO 2 and ash-borne nutrients, which together enhance biological productivity and burial of organic carbon, generating an abundance of hydrocarbon source rocks.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-22576-3</identifier><identifier>PMID: 29520023</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/47/4112 ; 704/2151/598 ; Biosphere ; Carbon ; Carbon - chemistry ; Carbon cycle ; Carbon dioxide ; Carbon Dioxide - chemistry ; Climate ; Cretaceous ; Degassing ; Geologic Sediments - chemistry ; Humanities and Social Sciences ; Isotopes ; Magma ; multidisciplinary ; Nutrients ; Organic carbon ; Preservation ; Rivers ; Science ; Science (multidisciplinary) ; Seawater ; Seawater - chemistry ; Volcanic ash ; Volcanic Eruptions</subject><ispartof>Scientific reports, 2018-03, Vol.8 (1), p.4197-9, Article 4197</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a602t-d835ca349ebbaaea319dc6822a22c63c92208797080cd9f9c5e1c0b8fc5f8e513</citedby><cites>FETCH-LOGICAL-a602t-d835ca349ebbaaea319dc6822a22c63c92208797080cd9f9c5e1c0b8fc5f8e513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2012137062/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2012137062?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29520023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Cin-Ty A.</creatorcontrib><creatorcontrib>Jiang, Hehe</creatorcontrib><creatorcontrib>Ronay, Elli</creatorcontrib><creatorcontrib>Minisini, Daniel</creatorcontrib><creatorcontrib>Stiles, Jackson</creatorcontrib><creatorcontrib>Neal, Matthew</creatorcontrib><title>Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO 2 through volcanic and metamorphic degassing. High atmospheric CO 2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO 2 through more rapid spreading at mid-ocean ridges and, in particular, to a global flare-up in continental arc volcanism. Here, we show that global flare-ups in continental arc magmatism also enhance the global flux of nutrients into the ocean through production of windblown ash. We show that up to 75% of Si, Fe and P is leached from windblown ash during and shortly after deposition, with soluble Si, Fe and P inputs from ash alone in the Cretaceous being higher than the combined input of dust and rivers today. Ash-derived nutrient inputs may have increased the efficiency of biological productivity and organic carbon preservation in the Cretaceous, possibly explaining why the carbon isotopic signature of Cretaceous seawater was high. Variations in volcanic activity, particularly continental arcs, have the potential of profoundly altering carbon cycling at the Earth’s surface by increasing inputs of CO 2 and ash-borne nutrients, which together enhance biological productivity and burial of organic carbon, generating an abundance of hydrocarbon source rocks.</description><subject>704/106/47/4112</subject><subject>704/2151/598</subject><subject>Biosphere</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Climate</subject><subject>Cretaceous</subject><subject>Degassing</subject><subject>Geologic Sediments - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Isotopes</subject><subject>Magma</subject><subject>multidisciplinary</subject><subject>Nutrients</subject><subject>Organic carbon</subject><subject>Preservation</subject><subject>Rivers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seawater</subject><subject>Seawater - chemistry</subject><subject>Volcanic ash</subject><subject>Volcanic Eruptions</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUFr3DAQhUVpaUKSP5BDEfTSi1NpZNnSpVCWtiks9JLmKsbyeNfBK6WSHei_r3Y3TdMeKhgkmG-e5vEYu5TiSgpl3udaamsqIU0FoNumUi_YKYhaV6AAXj57n7CLnO9EORpsLe1rdgJWgxCgTtn6Nk4ew-g55m0pjrxP4wMlHgdOYYvBU89j2hwYj6mLgXdLGnHiY-Dzlvgq0Yye4pLP2asBp0wXj_cZ-_75083qulp_-_J19XFdYSNgrnqjtEdVW-o6REIlbe8bA4AAvlHeAgjT2lYY4Xs7WK9JetGZwevBkJbqjH046t4v3Y56T2FOOLn7NO4w_XQRR_d3J4xbt4kPTptaNcoWgXePAin-WCjPbjdmT9OEYe_DgZBgZdvUUNC3_6B3cUmh2DtQUrWi2VNwpHyKOScanpaRwu3zcse8XMnLHfJyqgy9eW7jaeR3OgVQRyCXVthQ-vP3f2R_AaDjoCY</recordid><startdate>20180308</startdate><enddate>20180308</enddate><creator>Lee, Cin-Ty A.</creator><creator>Jiang, Hehe</creator><creator>Ronay, Elli</creator><creator>Minisini, Daniel</creator><creator>Stiles, Jackson</creator><creator>Neal, Matthew</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180308</creationdate><title>Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous</title><author>Lee, Cin-Ty A. ; Jiang, Hehe ; Ronay, Elli ; Minisini, Daniel ; Stiles, Jackson ; Neal, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a602t-d835ca349ebbaaea319dc6822a22c63c92208797080cd9f9c5e1c0b8fc5f8e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>704/106/47/4112</topic><topic>704/2151/598</topic><topic>Biosphere</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Climate</topic><topic>Cretaceous</topic><topic>Degassing</topic><topic>Geologic Sediments - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Isotopes</topic><topic>Magma</topic><topic>multidisciplinary</topic><topic>Nutrients</topic><topic>Organic carbon</topic><topic>Preservation</topic><topic>Rivers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seawater</topic><topic>Seawater - chemistry</topic><topic>Volcanic ash</topic><topic>Volcanic Eruptions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Cin-Ty A.</creatorcontrib><creatorcontrib>Jiang, Hehe</creatorcontrib><creatorcontrib>Ronay, Elli</creatorcontrib><creatorcontrib>Minisini, Daniel</creatorcontrib><creatorcontrib>Stiles, Jackson</creatorcontrib><creatorcontrib>Neal, Matthew</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Cin-Ty A.</au><au>Jiang, Hehe</au><au>Ronay, Elli</au><au>Minisini, Daniel</au><au>Stiles, Jackson</au><au>Neal, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-03-08</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>4197</spage><epage>9</epage><pages>4197-9</pages><artnum>4197</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO 2 through volcanic and metamorphic degassing. High atmospheric CO 2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO 2 through more rapid spreading at mid-ocean ridges and, in particular, to a global flare-up in continental arc volcanism. Here, we show that global flare-ups in continental arc magmatism also enhance the global flux of nutrients into the ocean through production of windblown ash. We show that up to 75% of Si, Fe and P is leached from windblown ash during and shortly after deposition, with soluble Si, Fe and P inputs from ash alone in the Cretaceous being higher than the combined input of dust and rivers today. Ash-derived nutrient inputs may have increased the efficiency of biological productivity and organic carbon preservation in the Cretaceous, possibly explaining why the carbon isotopic signature of Cretaceous seawater was high. Variations in volcanic activity, particularly continental arcs, have the potential of profoundly altering carbon cycling at the Earth’s surface by increasing inputs of CO 2 and ash-borne nutrients, which together enhance biological productivity and burial of organic carbon, generating an abundance of hydrocarbon source rocks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29520023</pmid><doi>10.1038/s41598-018-22576-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-03, Vol.8 (1), p.4197-9, Article 4197
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843639
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed; Springer Nature - nature.com Journals - Fully Open Access
subjects 704/106/47/4112
704/2151/598
Biosphere
Carbon
Carbon - chemistry
Carbon cycle
Carbon dioxide
Carbon Dioxide - chemistry
Climate
Cretaceous
Degassing
Geologic Sediments - chemistry
Humanities and Social Sciences
Isotopes
Magma
multidisciplinary
Nutrients
Organic carbon
Preservation
Rivers
Science
Science (multidisciplinary)
Seawater
Seawater - chemistry
Volcanic ash
Volcanic Eruptions
title Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volcanic%20ash%20as%20a%20driver%20of%20enhanced%20organic%20carbon%20burial%20in%20the%20Cretaceous&rft.jtitle=Scientific%20reports&rft.au=Lee,%20Cin-Ty%20A.&rft.date=2018-03-08&rft.volume=8&rft.issue=1&rft.spage=4197&rft.epage=9&rft.pages=4197-9&rft.artnum=4197&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-22576-3&rft_dat=%3Cproquest_pubme%3E2012917642%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a602t-d835ca349ebbaaea319dc6822a22c63c92208797080cd9f9c5e1c0b8fc5f8e513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012137062&rft_id=info:pmid/29520023&rfr_iscdi=true