Loading…

Vaccinia virus protein A49 activates Wnt signalling by targetting the E3 ligase β-TrCP

Vaccinia virus (VACV) encodes multiple proteins inhibiting the NF-κB signalling pathway. One of these, A49, targets the E3 ubiquitin ligase β-TrCP, which is responsible for the ubiquitylation and consequential proteosomal degradation of IκBα and the release of the NF-κB heterodimer. β-TrCP is a plei...

Full description

Saved in:
Bibliographic Details
Published in:Journal of general virology 2017-12, Vol.98 (12), p.3086-3092
Main Authors: Maluquer de Motes, Carlos, Smith, Geoffrey L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vaccinia virus (VACV) encodes multiple proteins inhibiting the NF-κB signalling pathway. One of these, A49, targets the E3 ubiquitin ligase β-TrCP, which is responsible for the ubiquitylation and consequential proteosomal degradation of IκBα and the release of the NF-κB heterodimer. β-TrCP is a pleiotropic enzyme ubiquitylating multiple cellular substrates, including the transcriptional activator β-catenin. Here we demonstrate that A49 can activate the Wnt signalling pathway, a critical pathway that is involved in cell cycle and cell differentiation, and is controlled by β-catenin. The data presented show that the expression of A49 ectopically or during VACV infection causes accumulation of β-catenin, and that A49 triggering of Wnt signalling is dependent on binding β-TrCP. This is consistent with A49 blocking the ability of β-TrCP to recognise β-catenin and IκBα, and possibly other cellular targets. Thus, A49 targetting of β-TrCP affects multiple cellular pathways, including the NF-κB and Wnt signalling cascades.
ISSN:0022-1317
1465-2099
DOI:10.1099/jgv.0.000946